Development of low-alcohol durian wine
Main Article Content
Abstract
The unusual durian has undergone fermentation to produce a low-alcohol wine. Saccharomyces cerevisiae is used to ferment the low-alcohol wine durian. Research findings indicated that a 1:7 durian pulp-to-water ratio and 1.50% w/v yeast cultures were chosen based on their high (p≤ 0.05) generation of ethyl alcohol content. The 25 °Brix low-alcohol durian wine was then selected to meet the necessary criteria to get a significantly (p≤ 0.05) high preference score in terms of aroma, taste, and overall acceptability, which were 6.70 ± 0.50, 7.30 ± 0.55, and 7.15±0.60, respectively. The ethyl alcohol concentration, total soluble solids, and pH of the resulting wine were 8.30±0.11%, 11.80±0.18°Brix, and 4.19±0.02, respectively. Interestingly, the findings of this study suggested that an innovative beverage could be created, combining the unique flavor of durian with reduced alcohol content and minimizing waste pollution for environmental preservation.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Aziz, N. A. A. and Jalil, A.M. M. (2019). Bioactive Compounds, Nutritional Value, and Potential Health Benefits of Indigenous Durian (Durio Zibethinus Murr.): A Review. Foods, 8:1-18. DOI: https://doi.org/10.3390/foods8030096
Brien, S. E., Ronksley, P. E., Turner, B. J., Mukamal, K. J. and Ghali, W. A. (2011). Effect of alcohol consumption on biological markers associated with risk of coronary heart disease: Systematic review and meta-analysis of interventional studies. British Medical Journal, · 342:d636. DOI: https://doi.org/10.1136/bmj.d636
Bucher, T., Deroover, K. and Stockley, C. (2018). Low-Alcohol Wine: A Narrative Review on Consumer Perception and Behaviour. Beverages, 4:1-9. DOI: https://doi.org/10.3390/beverages4040082
Bucher, T., Frey, E., Wilczynska, M., Deroover, K. and Dohle, S. (2020). Consumer perception and behaviour related to low-alcohol wine: do people overcompensate?. Public Health Nutrition, 23:1939-1947. DOI: https://doi.org/10.1017/S1368980019005238
Caterina, R. D. (2011). n–3 Fatty Acids in Cardiovascular Disease. The New England Journal of Medicine, 364:2439-2450. DOI: https://doi.org/10.1056/NEJMra1008153
Charoenphun, N. and Klangbud, W. K. (2022). Antioxidant and anti-inflammatory activities of durian (Durio zibethinus Murr.) pulp, seed, and peel flour. PeerJ, 10:1-15. DOI: https://doi.org/10.7717/peerj.12933
Cui, Y., L., W., Liu, J. and Wang, B. (2011). Effect of different ending fermentation technologies on microbial-stability of Italian Riesling low alcohol sweet white wine. Advanced Materials Research, 393-395:1165-1168. DOI: https://doi.org/10.4028/www.scientific.net/AMR.393-395.1165
Devalaraja, S., Jain, S. and Yadav, H. (2011). Exotic fruits as therapeutic complements for diabetes, obesity and metabolic syndrome. Food Research International, 44:1856-1865. DOI: https://doi.org/10.1016/j.foodres.2011.04.008
Dinata, W. K., Nazir, N. and Taib, G. (2021). The effect of the addition of Durian (Durio Zibethinus Murr) flesh on Gayo wine coffee characteristics. Asian Journal of Applied Research for Community Development and Empowerment, 5:1-5. DOI: https://doi.org/10.29165/ajarcde.v5i1.62
Fleet, G. H. (2003). Yeast interactions and wine flavour. International Journal of Food Microbiology, 86:11-22. DOI: https://doi.org/10.1016/S0168-1605(03)00245-9
Gill, A., Joshi, V. K. and Rana, N. (2009). Evaluation of preservation methods of low alcoholic plum wine. Natural Product Radiance, 8:392-405.
Gulcin, I., Oktay, M., Kirecci, E. and Kufrevioglu, O. I. (2003). Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chemistry, 83:371-382. DOI: https://doi.org/10.1016/S0308-8146(03)00098-0
Haruenkit, R., Poovarodom, S., Leontowicz, M., Sajewicz, M., Kowalska, T., Delgado-Licon, E., Delgado-Licon, E., Rocha-Guzman, N. E., Gallegos-Infante, J. and Trakhtenberg, S. (2007). Comparative study of health properties and nutritional value of durian, mangosteen, and snake fruit: Experiments in Vitro and In Vivo. Journal of Agricultural and Food Chemistry, 55:5842-5849. DOI: https://doi.org/10.1021/jf070475a
Haruenkit, R., Poovarodom, S., Vearasilp, S., Namiesnik, J., Sliwka-Kaszynska, M., Park, Y., Heo, B., Cho, J., Jang, H. G. and Gorinstein, S. (2010). Comparison of bioactive compounds, antioxidant and antiproliferative activities of Mon Thong durian during ripening. Food Chemistry, 118:540-547. DOI: https://doi.org/10.1016/j.foodchem.2009.05.029
Helge, T. S. (2009). Statistical Analysis of Designed Experiments. Third Edition, Springer New York Dordrecht Heidelberg, London, 2009, p.1-22.
Iqbal, S., Bhanger, M. I. and Anwar, F. (2005). Antioxidant properties and components of some
commercially available varieties of rice bran in Pakistan. Food Chemistry, 93:265-272. DOI: https://doi.org/10.1016/j.foodchem.2004.09.024
Lu, Y., Chua, J. Y., Huang, D., Lee, P. R. and Liu, S. Q. (2017a). Chemical consequences of three commercial strains of Oenococcus oeni co-inoculated with Torulaspora delbrueckii in durian wine fermentation. Food Chemistry, 215:209-218. DOI: https://doi.org/10.1016/j.foodchem.2016.07.158
Lu, Y., Voon, M. K. W., Huang, D., Lee, P. R. and Liu, S. Q. (2017b). Combined effects of fermentation temperature and pH on kinetic changes of chemical constituents of durian wine fermented with Saccharomyces cerevisiae. Applied Microbial and Cell Physiology, 101:3005-3014. DOI: https://doi.org/10.1007/s00253-016-8043-1
Lu, Y., Putra, S. D. and Liu, S. Q. (2018). A novel non-dairy beverage from durian pulp fermented with selected probiotics and yeast. International Journal of Food Microbiology, 265:1-8. DOI: https://doi.org/10.1016/j.ijfoodmicro.2017.10.030
Nikolaou, A., Santarmaki, V., Mitropoulou, G., Sgouros, G. and Kourkoutas, Y. (2023). Novel low-alcohol Sangria-Type wine products with immobilized Kefir cultures and essential oils. Microbiological Research,14:543-558. DOI: https://doi.org/10.3390/microbiolres14020038
Swiegers, J. H., Bartowsky, E. J., Henschke, P. A. and Pretorius, T. S. (2005). Yeast and bacterial modulation of wine aroma and flavour. Australian Journal of Grape and Wine Research, 11:139-173. DOI: https://doi.org/10.1111/j.1755-0238.2005.tb00285.x
Watts, B. M., Yumaki, C. L., Jeffery, L. E. and Elais, L. G. (1989). Basic sensory methods for food evaluation. International Development Research Centre, Ottawa, Canada, pp.159.
Xiong, H., Zhang, Y., Wang, W., Ye, H. and Zhang, Q. (2024). Enhancing the quality of low-alcohol navel orange wine through simultaneous co-fermentation using Saccharomyces cerevisiae SC-125, Angel Yeast SY, and Lactiplantibacillus plantarum BC114. Molecules, 29:1781. DOI: https://doi.org/10.3390/molecules29081781
Yang, X., Zhao, F., Yang, L., Li, J. and Zhu, X. (2022). Enhancement of the aroma in low-alcohol apple-blended pear wine mixed fermented with Saccharomyces cerevisiae and non-Saccharomyces yeasts. LWT-Food Science and Technology, 155:1-10. DOI: https://doi.org/10.1016/j.lwt.2021.112994
Zhang, D., Lao, F., Pan, X., Li, J., Yuan, L., Li, M., Cai, Y. and Wu, J. (2023). Enhancement effect of odor and multi-sensory superposition on sweetness. Comprehensive Reviews in Food Science and Food Safety, 22:4871-4888. DOI: https://doi.org/10.1111/1541-4337.13245
Zhu, J. C., Chen, F., Wang, L.Y., Niu, Y. W., Shu, C., Chen, H. X. and Xiao, Z. B. (2015). Comparison of aroma-active compounds and sensory characteristics of Durian (Durio zibethinus L.) wines using strains of Saccharomyces cerevisiae with odor activity values and partial least squares regression. Journal of Agricultural and Food Chemistry, 63:1939-1947. DOI: https://doi.org/10.1021/jf505666y