Responses of drought-stressed hot pepper to seaweed extract application: Agronomic and physiological perspectives

Main Article Content

Prameswari, W.
Fahrurrozi, F.
Muktamar, Z.
Sari, D. N.
Setyowati, N.

Abstract

A significant interaction between field capacity (FC) and seaweed extract (LSE) was observed for total chlorophyll content, with the highest level (4.74 mg/g tissue) in 0% LSE under 75% FC and the lowest (1.73 mg/g tissue) in 3.75% LSE under the same FC. While FC significantly affected growth and physiological traits, it had minimal impact on yield. Fruit weight and length varied slightly across FC levels: 100% FC (2.78 g & 11.79 cm), 75% FC (3.12 g & 13.41 cm), 50% FC (2.63 g & 12.46 cm), and 25% FC (3.12 g & 13.24 cm). In contrast, yield variables based on LSE treatment—fruit weight per plant and number of fruits per plant—showed moderate differences, with 0% LSE producing 17.51 g and 6.37 fruits, 1.25% LSE 19.95 g and 6.61 fruits, 2.5% LSE 17.98 g and 6.61 fruits, 3.75% LSE 22.09 g and 7.11 fruits, and 5% LSE 17.37 g and 6.52 fruits.

Article Details

How to Cite
Prameswari, W., Fahrurrozi, F., Muktamar, Z., Sari, D. N., & Setyowati, N. (2025). Responses of drought-stressed hot pepper to seaweed extract application: Agronomic and physiological perspectives. International Journal of Agricultural Technology, 21(6), 2509–2522. https://doi.org/10.63369/ijat.2025.21.6.2509-2522
Section
Original Study

References

Ahluwalia, O., Singh, P. C. and Bhatia, R. (2021). A Review on Drought Stress in Plants: Implications, Mitigation and the Role of Plant Growth Promoting Rhizobacteria. Resour. Environ. Sustain., 5:100032. DOI: https://doi.org/10.1016/j.resenv.2021.100032

Ali, F., Bano, A. and Fazal, A. (2017) Recent methods of drought stress tolerance in plants. Plant Growth Regul, 82:363-375. DOI: https://doi.org/10.1007/s10725-017-0267-2

Ali, O., Ramsubhag, A. and Jayaraman, J. (2021). Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants, 10:531. DOI: https://doi.org/10.3390/plants10030531

Aroca, R. (2012). (Ed.) Plant Responses to Drought Stress: From Morphological to Molecular Features. Springer: Berlin/Heidelberg. Germany. DOI: https://doi.org/10.1007/978-3-642-32653-0

Aslam, M., Maqbool, M. A. and Cengiz, R. (2015). Influence of drought stress on plant height and stem diameter in maize hybrids. Agronomy Research, 13:213-220.

Bayoumi, T. Y., Manal, H. E. and Metwali, E. M. (2008). Application of physiological and biochemical indices as a screening technique for drought tolerant in wheat genotypes. African Journal of Biotechnology, 7:2341-2352.

Bista, D. R., Heckathorn, S. A., Jayawardena, D. M., Mishra, S. and Boldt, J. K. (2018). Effects of drought on nutrient uptake and the levels of nutrient-uptake proteins in roots of drought-sensitive and -tolerant grasses. Plants, 7:28. DOI: https://doi.org/10.3390/plants7020028

Bondok, A. E. T., Mousa, W. M. E., Rady, A. M. S. and Saad-Allah, K. M. (2022). Phenotypical, physiological and molecular assessment of drought tolerance of five Egyptian teosinte genotypes. Journal of Plant Interactions, 17:656-673. DOI: https://doi.org/10.1080/17429145.2022.2085335

Cao, Y., Yang, W., Cheng, Z., Zhang, X., Liu, X., Wu, X. and Zhang, J. (2024). An integrated framework for drought stress in plants. PMC Articles. PubMed. https://pubmed.ncbi.nlm.nih.gov/39273296/ DOI: https://doi.org/10.3390/ijms25179347

El Boukhari, M. E. M., Barakate, M., Bouhia, Y. and Lyamlouli, K. (2020). Trends in seaweed extract based biostimulants: manufacturing process and beneficial effect on soil-plant systems. Plants, 9:359. DOI: https://doi.org/10.3390/plants9030359

El Boukhari, M. E. M., Barakate, M., Choumani, N., Bouhia, Y. and Lyamlouli, K. (2021). Ulva lactuca extract and fractions as seed priming agents mitigate salinity stress in tomato seedlings. Plants, 10:1104. DOI: https://doi.org/10.3390/plants10061104

Espinosa-Antón, A. A., Hernández-Herrera, R. M., Velasco-Ramírez, S. F., Ramírez-Anguiano, A. C. and Salcedo-Pérez, E. (2023). Application of seaweed generates changes in the physicochemical properties of soils. Plants, 12:1520.

Farooq, M., Hussain, M., Ul-Allah, S. and Siddique, K. H. (2019). Physiological and agronomic approaches for improving water-use efficiency in crop plants. Agricultural Water Management, 219:95-108. DOI: https://doi.org/10.1016/j.agwat.2019.04.010

Haworth, M., Marino, G., Brunetti, C., Killi, D., De Carlo, A. and Centritto, M. (2022). The Impact of Heat Stress and Water Deficit on the Photosynthetic and Stomatal Physiology of Olive (Olea europaea L.)-A Case Study of the 2017 Heat Wave. Plants, 7:76. DOI: https://doi.org/10.3390/plants7040076

Hussain, H. A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A., Men, S. and Wang, L. (2018). Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Frontiers in Plant Science, retried from https://doi.org/10.3389/fpls.2018.00393. DOI: https://doi.org/10.3389/fpls.2018.00393

Jacomassi, L. M., Viveiros, J. O., Oliveira, M. P., Momesso, L., de Siqueira, G. F. and Crusciol, C. A. C. (2022). A seaweed extract-based biostimulant mitigates drought stress in sugarcane. Frontiers in Plant Science, 13:865291. DOI: https://doi.org/10.3389/fpls.2022.865291

Jekabsone, A., Andersone-Ozola, U., Karlsons, A., Romanovs, M. and Ievinsh, G. (2022). Effect of Salinity on Growth, Ion Accumulation and Mineral Nutrition of Different Accessions of a Crop Wild Relative Legume Species, Trifolium fragiferum. Plants, 11:797. DOI: https://doi.org/10.3390/plants11060797

Jiménez-Arias, D., García-Machado, F. J., Morales-Sierra, S., García-García, A. L., Herrera, A. J., Valdés, F., Luis, J. C. and Borges, A. A. (2021). A beginner's guide to osmoprotection by biostimulants. Plants, 10:363. DOI: https://doi.org/10.3390/plants10020363

Joseph, J., Luster, J., Bottero, A., Buser, N., Baechli, L., Sever, K. and Gessler, A. (2021). Effects of drought on nitrogen uptake and carbon dynamics in trees. Tree Physiology, 41:927-944. DOI: https://doi.org/10.1093/treephys/tpaa146

Khan, R. I., Hafiz, I. A., Shafique, M., Ahmad, T., Ahmed, I. and Qureshi, A. A. (2018). Effect of pre-harvest foliar application of amino acids and seaweed (Ascophyllum nodosum) extract on growth, yield, and storage life of different bell pepper (Capsicum annuum L.) cultivars grown under hydroponic conditions. Journal of Plant Nutrition, 41:2309-2319. DOI: https://doi.org/10.1080/01904167.2018.1504966

Khan, W., Rayirath, U. P., Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M. and Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28:386-399. DOI: https://doi.org/10.1007/s00344-009-9103-x

Kumar, S., Sachdeva, S., Bhat, K. V. and Vats, S. (2018). Plant responses to drought stress: Physiological, biochemical and molecular basis. In Biotic and Abiotic Stress Tolerance in Plants. Vats, S., Ed.; Springer: Singapore, 1-25. DOI: https://doi.org/10.1007/978-981-10-9029-5_1

Laxa, M., Liebthal, M., Telman, W., Chibani, K. and Dietz, K. J. (2019). The role of the plant antioxidant system in drought tolerance. Antioxidants, 8:94. DOI: https://doi.org/10.3390/antiox8040094

Misra, A. N., Misra, N. and Singh, R. (2011). Nictric oxide ameliorates stress responses in plants. Plant, Soil and Environment, 57:95-100. DOI: https://doi.org/10.17221/202/2010-PSE

Mouradi, M., Bouizgaren, A., Farissi, M., and Ghoulam, C. (2018). Assessment of deficit irrigation responses of Moroccan alfalfa (Medicago sativa L.) landraces grown under field conditions. Irrig. Drain., 67:179-190. DOI: https://doi.org/10.1002/ird.2190

Mukherjee, S., Dash, P. K., Das, D. and Das, S. (2023). Growth, yield and water productivity of tomato as influenced by deficit irrigation water management. Environ. Process., 10:10. DOI: https://doi.org/10.1007/s40710-023-00624-z

O’Connell, E. (2017). Towards Adaptation of Water Resource Systems to Climatic and Socio-Economic Change. Water Resources Management, 31:2965-2984. DOI: https://doi.org/10.1007/s11269-017-1734-2

Ojuederie, O. B., Olanrewaju, O. S. and Babalola, O. O. (2019). Plant Growth Promoting Rhizobacterial Mitigation of Drought Stress in Crop Plants: Implications for Sustainable Agriculture. Agronomy, 9:712. DOI: https://doi.org/10.3390/agronomy9110712

Ouhaddou, R., Ech-Chatir, L., Anli, M., Ben-Laouane, R., Boutasknit, A. and Meddich, A. (2023). Secondary metabolites, osmolytes and antioxidant activity as the main attributes enhanced by biostimulants for growth and resilience of lettuce to drought stress. Gesunde Pflanz., 75:1737-1753. DOI: https://doi.org/10.1007/s10343-022-00827-8

Oukaltouma, K., El Moukhtari, A., Lahrizi, Y., Makoudi, B., Mouradi, M., Farissi, M., Willems, A., Qaddoury, A. and Bekkaoui, F. (2022). Physiological, biochemical and morphological tolerance mechanisms of faba bean (Vicia faba L.) to combined water-deficit and phosphorus limitation. Journal of Soil Science and Plant Nutrition, 22:1632-1646. DOI: https://doi.org/10.1007/s42729-022-00759-2

Panda, S. K., Gupta, D., Patel, M., Van Der Vyver, C. and Koyama, H. (2024). Functionality of reactive oxygen species (ROS) in plants: Toxicity and control in Poaceae crops exposed to abiotic stress. Plants, 13:2071. DOI: https://doi.org/10.3390/plants13152071

Pastor, V., Luna, E., Mauch-Mani, B., Ton, J. and Flors, V. (2013). Primed plants do not forget. Environmental and Experimental Botany, 94:46-56. DOI: https://doi.org/10.1016/j.envexpbot.2012.02.013

Ruiz, L. N., Medina, L. F., Minero, G. Y., Zamudio, M. E., Guzmán, A. A., Echevarría M. I. and Martínez E. M. (2011). Water Deficit Affects the Accumulation of Capsaicinoids in Fruits of Capsicum chinense Jacq. HortScience, 46:487-492. DOI: https://doi.org/10.21273/HORTSCI.46.3.487

Sachdev, S., Ansari, S. A., Ansari, M. I., Fujita, M. and Hasanuzzaman, M. (2021). Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms. Antioxidants, 10:277. DOI: https://doi.org/10.3390/antiox10020277

Salim, A., El-Desouky, S. A., El-Nemr, M. A., El-Tohamy, W. A. and Abou-Hadid, A. F. (2025). Influence of seaweed extract, fulvic acid and poly amino acid on yield components of Capsicum annuum L. Journal of Plant Production, Mansoura University, 16:7-11. DOI: https://doi.org/10.21608/jpp.2025.349578.1426

Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajeed, H. H. and Bettaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants,10:259. DOI: https://doi.org/10.3390/plants10020259

Sezen, S. M., Yazar, A. and Eker, S. (2006). Effect of drip irrigation regimes on yield and quality of field grown bell pepper. Agricultural Water Management, 81:115-131. DOI: https://doi.org/10.1016/j.agwat.2005.04.002

Sharma, S., Chen, C., Khatri, K. et al. (2019). Gracilaria dura extract confers drought tolerance in wheat by modulating abscisic acid homeostasis. Plant Physiol Biochem., 136:143-154. DOI: https://doi.org/10.1016/j.plaphy.2019.01.015

Shukla, P. S., Mantin, E. G., Adil, M., Bajpai, S., Critchley, A. T. and Prithiviraj, B. (2019a). Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Frontiers in Plant Science, 10:655.

Shukla, P. S., Shotton, K., Rayorath, P., Cran, M. J. and Prithiviraj, B. (2019b). Seaweed extracts and their influence on plant growth, physiology, and stress tolerance. Frontiers in Plant Science, 10:1453. DOI: https://doi.org/10.3389/fpls.2019.00655

Yang, X., Zhang, Y., Li, J. and Wang, Z. (2021). Response mechanism of plants to drought stress. Agronomy, 11:50. DOI: https://doi.org/10.3390/horticulturae7030050

Yao, Y., Wang, X., Chen, B., Zhang, M. and Ma, J. (2020). Seaweed extracts improved yields, leaf photosynthesis, ripening time, and net returns of tomato (Solanum lycopersicum Mill.). ACS Omega, 5:4242-4249. DOI: https://doi.org/10.1021/acsomega.9b04155

Zhang. X., Hao, Z., Singh, V. P. et al. (2022). Drought propagation under global warming: characteristics, approaches, processes, and controlling factors. Science of the Total Environment, 838:156021. DOI: https://doi.org/10.1016/j.scitotenv.2022.156021