Bacteria that can tolerate and decontaminate cadmium and lead contaminated rice paddy soil
Main Article Content
Abstract
One of the current issues in rice-growing regions is heavy metals contaminated rice paddy. The environment and the health of people, animals, plants, and crops are negatively impacted by high levels of cadmium (Cd) and lead (Pb). The present study isolated and identified potential microbial remediators from the rice growing area contaminated with heavy metals at Sitio Namangonan, Guiset Norte, San Manuel, Pangasinan, Luzon Island, Philippines. The bacterial isolates were molecularly identified using 16S ribosomal RNA gene sequencing, the Basic Local Alignment Search Tool (BLAST), and performed evolutionary analyses using MEGA 11. The soil sample contained 0.42 mg/kg cadmium and 57.80 mg/kg lead. Five species of bacteria (BI-1, BI-2, BI-3, BI-4, and BI-5) namely: Priestia flexa BI-1, Priestia megaterium BI-2, Stenotrophomonas maltophilia BI-3; P. megaterium BI-4; and P. megaterium BI-5 with 98.94%, 98.47%, 92.53%, 84.21%, and 99.67% similarity, respectively, were isolated from the soil contaminated with cadmium and lead. Furthermore, P. megaterium BI-2, Stenotrophomonas maltophilia BI-3, Priestia megaterium BI-4, and P. megaterium BI-5 are tolerant to up to 1000 mg/kg cadmium concentration while P. flexa BI-1 is identified as non-tolerant to cadmium contamination. Additionally, Priestia megaterium BI-2, S. maltophilia BI-3, P. megaterium BI-4, and P. megaterium BI-5 are resistant to lead concentrations of up to 1000 mg/kg. Therefore, in cadmium and lead-contaminated rice paddy soil, the bacterial isolates are resistant to heavy metals. Finally, these bacterial isolates could clean up lead and cadmium-contaminated rice paddy soil.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Abatenh, E., Gizaw, B., Tsegaye, Z. and Wassie, M. (2017). The role of microorganisms in bioremediation-A review. Open Journal of Environmental Biology, 2:038-046. DOI: https://doi.org/10.17352/ojeb.000007
Alzahrani, O. M., Abo-Amer, A. E. and Mohamed, R. M. (2022). Improvement of Zn (II) and CD (II) biosorption by Priestia megaterium PRJNA526404 isolated from agricultural waste water. Microorganisms, 10:2510. DOI: https://doi.org/10.3390/microorganisms10122510
Ayilara, M. S. and Babalola, O. O. (2023). Bioremediation of environmental wastes: the role of microorganisms. Frontiers in Agronomy, 5:1183691. DOI: https://doi.org/10.3389/fagro.2023.1183691
Bernard, A. and Lauwerys, R. (1986). Effects of cadmium exposure in humans. Cadmium, 135-177. DOI: https://doi.org/10.1007/978-3-642-70856-5_5
Charkiewicz, A. E., Omeljaniuk, W. J., Nowak, K., Garley, M. and Nikliński, J. (2023). Cadmium toxicity and health effects—a brief summary. Molecules, 28:6620. DOI: https://doi.org/10.3390/molecules28186620
Chien, C. C., Hung, C. W. and Han, C. T. (2007). Removal of cadmium ions during stationary growth phase by an extremely cadmium‐resistant strain of Stenotrophomonas sp. Environmental Toxicology and Chemistry: An International Journal, 26:664-668. DOI: https://doi.org/10.1897/06-280R.1
Felsenstein J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791. DOI: https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A. and Catalano, A. (2020). The effects of cadmium toxicity. International journal of environmental research and public health, 17:3782. DOI: https://doi.org/10.3390/ijerph17113782
Ghosh, A. and Saha, P. D. (2013). Optimization of copper bioremediation by Stenotrophomonas maltophilia PD2. Journal of Environmental Chemical Engineering, 1:159-163. DOI: https://doi.org/10.1016/j.jece.2013.04.012
Guzmán-Moreno, J., García-Ortega, L. F., Torres-Saucedo, L., Rivas-Noriega, P., Ramírez-Santoyo, R. M., Sánchez-Calderón, L., Quiroz-Serrano, I. N. and Vidales-Rodríguez, L. E. (2022). Bacillus megaterium HgT21: A promising metal multiresistant plant growth-promoting bacteria for soil biorestoration. Microbiology spectrum, 10:e00656-22. DOI: https://doi.org/10.1128/spectrum.00656-22
Hakeem, K. R., Sabir, M., Ozturk, M. and Mermut, A. (2015). Soil remediation and plants: prospects and challenges. Academic Press. 707.
Ikhimiukor, O. O. and Adelowo, O. O. (2019). Selective metal accumulation by metal-resistant bacteria growing on spent engine oil in single and ternary metal mixtures. International Journal of Environmental Science and Technology, 16:4945-4954. DOI: https://doi.org/10.1007/s13762-018-2137-5
Kumari, D., Pan, X., Achal, V., Zhang, D., Al-Misned, F. A. and Golam Mortuza, M. (2015). Multiple metal-resistant bacteria and fungi from acidic copper mine tailings of Xinjiang, China. Environmental Earth Sciences, 74:3113-3121. DOI: https://doi.org/10.1007/s12665-015-4349-z
Lane, D. J. (1991). 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics. E. Stackebrandt and M. Goodfellow, eds. New York, NY, John Wiley and Sons, pp.115-175.
Levin, R., Vieira, C. L. Z., Mordarski, D. C. and Rosenbaum, M. H. (2020). Lead seasonality in humans, animals, and the natural environment. Environmental research, 180:108797. DOI: https://doi.org/10.1016/j.envres.2019.108797
Liaquat, F., Munis, M. F. H., Arif, S., Haroon, U., Shengquan, C. and Qunlu, L. (2020). Cd-tolerant SY-2 strain of Stenotrophomonas maltophilia: a potential PGPR, isolated from the Nanjing mining area in China. 3 Biotech, 10:1-10. DOI: https://doi.org/10.1007/s13205-020-02524-7
Liu, X., Ji, J., Zhang, X., Chen, Z., He, L. and Wang, C. (2024). Microbial remediation of crude oil in saline conditions by oil-degrading bacterium Priestia megaterium FDU301. Applied Biochemistry and Biotechnology, 196:2694-2712. DOI: https://doi.org/10.1007/s12010-022-04245-4
Meers, E., Qadir, M., de Caritat, P., Tack, F. M. G., Du Laing, G. and Zia, M. H. (2009). EDTA assisted Pb phytoextraction. Chemosphere, 74:1279-1291. DOI: https://doi.org/10.1016/j.chemosphere.2008.11.007
Mitra, S., Chakraborty, A. J., Tareq, A. M., Emran, T. B., Nainu, F., Khusro, A., Idris, A. M., Khandaker, M. U., Osman, H., Alhumaydhi, F. A. and Simal-Gandara, J. (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University-Science, 34:101865. DOI: https://doi.org/10.1016/j.jksus.2022.101865
Ojo, G. J., Onile, O. S., Momoh, A. O., Oyeyemi, B. F., Omoboyede, V., Fadahunsi, A. I. and Onile, T. (2023). Physiochemical analyses and molecular characterization of heavy metal-resistant bacteria from Ilesha gold mining sites in Nigeria. Journal of Genetic Engineering and Biotechnology, 21:172. DOI: https://doi.org/10.1186/s43141-023-00607-5
Ramos, Jr, P. S., Manangkil, O. E., Reyes, R. G. and Kalaw, S. P. (2020). Identification of potential bacterial and fungal bioremediators in rice ecosystem contaminated with mine tailings. Rice-Based Biosystems Journal, 27.
Rehman, K., Fatima, F., Waheed, I. and Akash, M. S. H. (2018). Prevalence of exposure of heavy metals and their impact on health consequences. Journal of cellular biochemistry, 119:157-184. DOI: https://doi.org/10.1002/jcb.26234
Sevak, P., Pushkar, B. and Mazumdar, S. (2024). Unravelling the mechanism of arsenic resistance and bioremediation in Stenotrophomonas maltophilia: A molecular approach. Environmental Pollution, 363, 125066. DOI: https://doi.org/10.1016/j.envpol.2024.125066
Sharma, H., Rawal, N. and Mathew, B. B. (2015). The characteristics, toxicity and effects of cadmium. International journal of nanotechnology and nanoscience, 3:1-9.
Soto-Varela, Z. E., Orozco-Sánchez, C. J., Bolívar-Anillo, H. J., Martínez, J. M., Rodríguez, N., Consuegra-Padilla, N., Robledo-Meza, A. and Amils, R. (2024). Halotolerant endophytic bacteria Priestia flexa 7BS3110 with Hg2+ tolerance isolated from Avicennia germinans in a Caribbean mangrove from Colombia. Microorganisms, 12:1857. DOI: https://doi.org/10.3390/microorganisms12091857
Tam, N. K. B., Thanh, L. H., Van, N. T., Linh, N. V. M., Tra, L. T., Tung, T. V. and Thao, P. T. H. (2022). Characterization of arsenic-resistant endophytic Priestia megaterium R2. 5.2 isolated from ferns in an arsenic-contaminated multi-metal mine in Vietnam. DOI: https://doi.org/10.18006/2022.10(6).1410.1421
Tamura, K. and Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10:512-526.
Tamura, K., Stecher, G. and Kumar, S. (2021). MEGA 11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution. DOI: https://doi.org/10.1093/molbev/msab120
Wierzba, S. (2015). Biosorption of lead (II), zinc (II) and nickel (II) from industrial wastewater by Stenotrophomonas maltophilia and Bacillus subtilis. Polish Journal of Chemical Technology, 17:79-87. DOI: https://doi.org/10.1515/pjct-2015-0012
Zelaya-Molina, L. X., Guerra-Camacho, J. E., Ortiz-Alvarez, J. M., Vigueras-Cortés, J. M., Villa-Tanaca, L. and Hernández-Rodríguez, C. (2023). Plant growth-promoting and heavy metal-resistant Priestia and Bacillus strains associated with pioneer plants from mine tailings. Archives of Microbiology, 205:318. DOI: https://doi.org/10.1007/s00203-023-03650-5
Zhuang, P., McBride, M.B., Xia, H., Li, N. and Li, Z. (2009). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of The Total Environment, 407:1551-1561. DOI: https://doi.org/10.1016/j.scitotenv.2008.10.061