The flavonol glycoside- and antioxidant alterations during the flowering stages of cloves (Syzygium aromaticum (L.) Merr
Main Article Content
Abstract
The flavonol glycosides belong to a large group of flavonoids diverse in chemical structures and properties. In plants, these compounds are usually in O-glycosides with common quercetin or myricetin aglycon. Quercetin is generally the most abundant and prominent component. Flavonols and flavone glycosides were common cloves chemotypes with potential natural antioxidants. The changes and antioxidant capacities of flavonol glycosides during the flowering stages of clove (FS-1 to FS-4) were investigated. Identifications of flavonol glycosides constituent, total phenolic, flavonoids, and antioxidant capacities were evaluated the extracts generated in every stage of clove flowers formation. The experiment showed various concentrations of flavonols (quercetin, quercetin-3-O-glycoside, myricetin, myricetin-3-O-glycoside) and flavones (luteolin-7-O-glycoside, apigenin-7-O-glycoside), as the highest concentration of quercetin-3-O-glycoside was found during the bloom stage (FS-4) at 110.27 μg/g. The blooming stage also had a significantly higher in-vitro antioxidant capacity than FS-1, FS-2, and FS-3. Antioxidant activity was based on 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical (OH•), and superoxide radical (•O2) scavenging. It is suggested as the best stage in harvesting the cloves for the natural antioxidant source
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Adefegha, S. A., Oboh, G., Oyeleye, S. I. and K. Osunmo (2016). Alteration of starch hydrolyzing enzyme inhibitory properties, antioxidant activities, and phenolic profile of clove buds (Syzygium aromaticum L.) by cooking duration. Food Science & Nutrition, 4:250-260.
Adegbaju, O. D., Otunola, G. A. and Afolayan A. J. (2020). Effects of growth stage and seasons on the phytochemical content and antioxidant activities of crude extracts of Celosia argentea, L. Heliyon, 6:e04086
Anwar, K., Rahmanto, B., Triyasmono, L., Rizki, M. I., Halwany, W. and Lestari, F. (2017). The influence of leaf age on total phenolic, flavonoids, and free radical scavenging capacity of Aquilaria beccariana. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 8:129-133.
Bestwick, C. S., Milne, L. and Duthie, S. J. (2007). Kaempferol induced inhibition of HL-60 cell growth results from a heterogeneous response, dominated by cell cycle alterations. Chemico-Biological Interactions, 170:76-85.
Chang, Q., Zuo, Z., Chow, M. S. and Ho, W. K. (2005). Difference in absorption of the two structurally similar flavonoid glycosides, hyperoside and isoquercitrin, in rats. European Journal of Pharmaceutics and Biopharmaceutics, 59:549-555.
Cheng, J. Y., Kondo, K., Suzuki, Y., Ikeda, Y., Meng, X. and Umemura, K. (2007). Inhibitory effects of total flavones of hippophae rhamnoides l on thrombosis in mouse femoral artery and in vitro platelet aggregation. Life Sciences, 72:2263-2271.
Crespy, V., Morand, C., Besson, C., Manach, C., Demigne, C. and Remesy, C. (2002). Quercetin, but not its glycosides, is absorbed from the rat stomach. Journal of Agriculture and Food Chemistry, 50:618-621.
De Whaley, C. V., Rankin, S. M., Hoult, J. R. S., Jessup, W. and Leake, D. S. (1990). Flavonoids inhibit the oxidative modification of low density lipoproteins by macrophages. Biochemistry Pharmacology, 39:1743-1750.
Ding, W., Yang, T., Liu, F. and Tian, S. (2014). Effect of different growth stages of Ziziphora clinopodioides Lam. on its chemical composition. Pharmacognosy Magazine, 10:1-5.
Ewald, C. Fjelkner-Modig, S., Johansson, K., Sjoholm, I. and Akesson, B. (1999). Effect of processing on major flavonoids in processed onions, green beans, and peas. Food Chemistry, 64:231-235.
Fernandes, L., Casal, S., Pereira, J. A., Saraiva, J. A. and Ramalhosa, E. (2017). Edible flowers: A review of the nutritional, antioxidant, antimicrobial properties and effects on human health. Journal of Food Composition and Analysis, 60:38-50.
Formica, J. F. and Regelson, W. (1995). Review of the biology of quercetin and related bioflavonoid. Food Chemistry Toxicology, 33:1061-1080.
Galvez, M., Martin-Cordero, C., Houghton, P. J. and Ayuso, M. J. (2005). Antioxidant activity of methanol extracts obtained from plantago species. Journal of Agricultural and Food Chemistry, 53:1927-1933.
Graf, B. A., Ameho, C., Dolnikowski, G. G., Milbury, P. E., Chen, C. Y. and Blumberg, J. B. (2006). Rat Gastrointestinal Tissues Metabolize Quercetin. The Journal of Nutrition, 136:39-44.
Hamad, A., Mahardika, M. G. P., Yuliani, I. and Hartanti, D. (2017). Chemical constituents and antimicrobial activities of essential oils of Syzygium polyanthum and Syzygium aromaticum. Rasayan Journal of Chemistry, 10:564-569.
Harborne, J. B. and Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55:481-504.
Hertog, M. G. L., Feskens, E. J. M., Hollman, P. C. H., Katan, M. B. and Kromhout, D. (1993). Dietary antioxidant Flavonoids and risk of coronary heart disease: the zutphen elderly study. Lancet, 342:1007-1011.
Isnaini., Permatasari, N., Mintaroem, K. and Widodo, A. M. (2018). Analysis of quercetin and kaempferol levels in various phase of flowers Melastoma malabathricum L. International Journal of Plant Biology, 9:6846-3.
Kaisoon, O., Siriamornpun, S., Weerapreeyakul, N. and Meeso N (2011). Phenolic compounds and antioxidant activities of edible flowers from Thailand. Journal of Functional Foods, 3: 88-99.
Kasote, D. M., Katyare, S. S., Hegde, M. V. and Bae H. (2015). Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences, 11:982-991.
Kaur, C. and Kapoor, H.C. (2001). Antioxidants in fruits and vegetables-the millennium's health. International Journal of Food Science and Technology, 36:703-725.
Kozłowska, A. and Szostak-Węgierek D. (2017). Flavonoids – Food Sources, Health Benefits, and Mechanisms Involved. Bioactive Molecules in Food, 1-27.
Li, X., Lu, M., Tang, D. and Shi, Y. (2015). Composition of carotenoids and flavonoids in narcissus cultivars and their relationship with flower color. PLoS One, 10:e142074
Middleton, E. J. R. and Kandaswami, C. (1992). Effects of flavonoids on immune and inflammatory cell functions. Biochemical Pharmacology, 43:1167-1179.
Miyazawa, M. and Hisama, M. (2001). Suppression of chemical mutagen-induced sos response by alkylphenols from clove (Syzygium aromaticum) in the Salmonella typhimurium TA1535/pSK1002 umu test. Journal of Agricultural and Food Chemistry, 49:4019-4025.
Neveu, V., Perez-Jiménez, J., Vos, F., Crespy, V., Du Chaffaut, L., Mennen, L. and Scalbert, A. (2010). Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. The Journal of Biological Databases and Curation, bap24-bap24.
Nichenametla, S. N., Taruscio, T. G., Barney, D. L. and Exon, J. H. (2006). A review of the effects and mechanisms of polyphenolics in cancer. Critical Reviews In Food Science and Nutrition, 46:161-183.
Nugraha, A. S., Anggita, I. D., Ratnadewi, A. A. I., Siswoyo, T. A., Pratama, A. N. W., Hendra, R. and Keller, P. A. (2021). Phytochemical and pharmacological evaluation of a medicinal plant of Indonesian tengger ethnic group. Rasayan Journal of Chemistry¸ 14:2516-2520.
Petrussa, E., Braidot, E., Zancani, M., Peresson, C., Bertolini, A., Patui, S. and Vianello, A. (2013). Plant flavonoids—biosynthesis, transport and involvement in stress responses. International Journal of Molecular Sciences, 14:14950-14973.
Quideau, S., Deffieux, D., Douat-Casassus, C. and Pouysegu, L. (2011). Plant polyphenols: chemical properties, biological activities, and synthesis. Angewandte Chemie International Edition, 50:586-621.
Ramadhan, R., Phuwapraisirisan, P., Kusuma, I. W. and Amirta, R. (2020). Ethnopharmacological evaluation of selected east Kalimantan flora for diabetes therapy: the isolation of lupane triterpenoids as α-glucosidase inhibitors from Ceriops tagal (PERR) C.B. Robb. Rasayan Journal of Chemistry¸ 13:1727-1734.
Ratnadewi, A. A. I., Wahyudi, L. D., Rochman, J., Susilowati, Nugraha, A. S. and Siswoyo, T. A. (2020). Revealing anti-diabetic potency of medicinal plants of Meru Betiri National Park, Jember – Indonesia. Rasayan Journal of Chemistry¸ 13:1831-1836.
Rice-Evans, C. Miller, N. and Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science, 2:152-159.
Rauf, A., Imran, M., Khan, I. A., Ur-Rehman, M., Gilani, S. A., Mehmood, Z. and Mubarak, M. S. (2018). Anticancer potential of quercetin: A comprehensive review. Phytotherapy Research, 32:2109-2130.
Sarangowa, O., Kanazawa, T., Nishizawa, M., Myoda, T., Bai, C. and Yamagishi, T. (2014). Flavonol glycosides in the petal of Rosa species as chemotaxonomic markers. Phytochemistry, 107:61–68.
Saxena, M., Saxena, J., Nema, R., Singh, D. and Gupta, A. (2013). Phytochemistry of medicinal plants. Journal of Pharmacognosy and Phytochemistry, 1:168-182.
Scalbert, A., Morand, C., Manach, C. and Remesy, C. (2002). Absorption and metabolism of polyphenols in the gut and impact on health. Biomedicine & Pharmacotherapy, 56:276-282.
Schmitzer, V., Robert, V., Gregor, O. and Franci, S. (2009) Changes in the phenolic concentration during flower development of rose KORcrisett. Journal of the American Society for Horticultural Science, 134: 491-496.
Siswoyo, T. A., Ardyati, T. and Hosokawa, K. (2017). Fermentation-induced changes in antioxidant activities and oxidative DNA damage protection of melinjo (Gnetum gnemon) flour. Journal of Food Biochemistry, 41:e12382
Sood, S. and Nagar, P. K. (2003). Changes in abscisic acid and phenols during flower development in two diverse species of rose. Acta Physiologiae Plantarum, 25:411-416.
Stewart, A., Bozonnet, S., Mullen, W., Jenkis, G. I., Lean, M. E. and Crozier, A. (2000). Occurrence of flavonols in tomatoes and tomato-based products. Journal of Agricultural and Food Chemistry, 48:2663-2669.
Supriyadi, A., Arum, L. S., Nugraha, A. S., Ratnadewi, A. A. I. and Siswoyo, T. A. (2019). Revealing antioxidant and antidiabetic potency of melinjo (Gnetum gnemon) seed protein hydrolysate at different stages of seed maturation. Current Research in Nutrition and Food Science Journal, 7:479-487.
Tang, X., He Z., Day, Y., Xiong, Y. L., Xie, M. and Chen, J. (2010). Peptide fractionation and free radical scavenging activity of zein hydrolysate. Journal of Agricultural and Food Chemistry, 58:587-593.
Vinson, J. A., Dabbagh, Y. A., Serry, M. M. and Jang, J. (1995). Flavonoids inhibit the oxidative modification of low-density lipoproteins by macrophages. Journal of Agricultural and Food Chemistry, 43:1743-1750.
Vuorinen, H., Maatta, K. and Torronen, R. (2000). Content of the flavonols myricetin, quercetin, and kaempferol in finnish berry wines. Journal of Agricultural and Food Chemistry, 48: 2675-2680.
Williams, R. J., Spencer, P. E. and Rice-Evans, C. (2004). Flavonoids: antioxidants or signaling molecules?. Free Radical Biology & Medicine, 36:838-849.
Yoshida, M., Sakai, T., Hosokawa, N., Marui, N., Matsumoto, K., Fujioka, A., Nishino, H. and Aoike, A. (1990). The effect of quercetin on cell cycle progression and growth of human gastric cancer cells. FEBS Letters, 260:10-13.
Zribi, I., Omezzine, F. and Haouala, R., (2014). Variation in phytochemical constituents and allelopathic potential of Nigella sativa with developmental stages. South African Journal of Botany, 94:255-262.