Mycobization with Glomus mosseae and Aspergillus niger in Lycopersicon esculentum plants

Main Article Content

Velázquez M.S.
Elíades L.A.
Irrazabal G.B.
Saparrat C.M.
Cabello M.N.

Abstract

The effect of mycobization with both an arbuscular mycorrhizal fungus, Glomus mosseae, and a phosphorus-solubilizing microorganism, Aspergillus niger, was evaluated on tomato plants grown on steamed perlite-vermiculite-sand substrate added either with or without rock phosphate in six greenhouse treatments. Plant aerial biomass, phosphorus concentration in plant tissue, and P available in the substrate were evaluated upon 60-day-old harvested plants. Mycorrhizal colonization was positive in all treatments inoculated with Glomus mosseae, although, lower infection values were found as P content in the substrate increased. A high phosphorus content was observed in plants from the treatments with added phosphoric rock; these levels were independent of the microbial inoculation. The highest values of aerial biomass and height of the plant were seen in the treatments co-inoculated with both microorganisms with or without phosphoric rock. This work confirms the synergic effects between mycorrhizal fungi and phosphorus solubilizing microorganisms. However, the results obtained cannot be extrapolated since each plant-soil-organism system deserves special analysis.

Article Details

How to Cite
Velázquez M.S., Elíades L.A., Irrazabal G.B., Saparrat C.M., & Cabello M.N. (2005). Mycobization with Glomus mosseae and Aspergillus niger in Lycopersicon esculentum plants. International Journal of Agricultural Technology, 1(2), 315–326. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/9196
Section
Original Study

References

Antunes, V. and Cardoso, E.J.B.N. (1991). Growth and nutrient status of citrus plant as influenced by mycorrhiza and phosphorus application. Plant and Soil 131: 11-19.

Bagyaraj, J.M. (1992). Vesicular-arbuscular mycorrhiza: application in agriculture. In:Methods in Microbiology. (eds. J.R. Norris, D.J. Read, and A.K. Varma). Academic Press, London, UK: 819-833.

Barea, J.M. (1991). Vesicular-arbuscular mycorrhizae as modifiers of soil fertility. Plant and Soil 96: 3-15.

Barea, J.M., Azcon, R. and Azcon-Aguilar, C. (2005). Interactions between mycorrhizal fungi and bacteria to improve plant nutrient cycling and soil structure. In: Microorganisms in Soils: Roles in Genesis and Functions. (eds. F. Buscot and A. Varma). Springer-Verlag, Berlin Heidelberg, Germany: 196-212.

Bray, R.H. and Kurtz, L.T. (1945). Determination of total, organic and available forms of phosphorus in soils. Soil Science 59: 39-45.

Buscot, F. and Varma, A. (2005). Microorganisms in Soils: Roles in Genesis and Functions. Springer-Verlag, Berlin Heidelberg, Germany.

Cabello, M.N. (1999). Effectiveness of indigenous arbuscular mycorrhizae fungi (AMF) isolated from hydrocarbon polluted soils. Journal of Basic Microbiology 39: 81-95.

Cabello, M., Irrazabal, G., Bucsinszky, A.M, Saparrat, M. and Schalamuck, S. (2005). Effect of an arbuscular mycorrhizal fungus, G. mosseae and a rock-phosphate-solubilizingfungus, P. thomii in Mentha piperita growth in a soiless medium. Journal of Basic Microbiology 45: 182-189.

Cardoso, E.J.B.N., Antunes, V., Silveira, A.P.D. and Oliveira, M.H.A. (1986). Efficiência de fungos micorrizicos vesiculo-arbusculares em porta-enxertos de citros. Revista Brasileira de Ciência do Solo 10: 25-30.

Dakora, F.D. and Phillips, D.A. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil 245: 35-47.

Deubel, A. and Merbach, W. (2005). Influence of microorganisms on phosphorus bioavailability in soils. In: Microorganisms in Soils: Roles in Genesis and Functions. (eds. F. Buscot and A. Varma). Springer-Verlag, Berlin Heidelberg, Germany: 177-191.

Elíades, L., Bucsinszky, A.M. and Cabello, M. (2004). Micobiota alcalofílica y alcalinotolerante en suelos de bosques xéricos en una localidad de la provincia de Buenos Aires, Argentina, Boletín Micológico 19: 41-47.

Gerdemann, J.W. and Nicolson, T.H. (1963). Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society 46: 235-244.

Gianninazzi-Pearson, V., Fardeau, J.C., Asimi, S. and Gianninazzi, S. (1981). Source of additional phosphorus absorved from soil by vesicular-arbuscular mycorrhizal soybeans. Physiologie Végétale 19: 33-34.

Giovannetti, M. and Mosse, B. (1980). An evolution of techniques for measuring vesiculararbuscular mycorrhizal infection in root. New Phytologist 84: 489-499.

Goenadi, D., Siswanto, H. and Sugiarto, Y. (2000). Bioactivation of poorly soluble phosphate rocks with a phosphorus–solubilizing fungus. Soil Science Society of America, Journal 64: 927-932.

González Méndez, S. (2005) La colonización de las raíces luego de una microbización inducida. V Reunión Nacional Científico Técnica de Biología del Suelo. V Encuentro sobre Fijación Biológica de Nitrógeno.

Grimal, J.Y., Frossard, E. and Morel, J.L. (2001). Maize root mucilage decreased adsorption of phosphate on goethite. Biology and Fertilility of Soils 33: 226-230.

He, Z.L., Baligar, V.C., Martens, D.C., Ritckey, K.D. and Elrashidi, M. (1999). Effect of byproduct nitrogen fertilizer, and zeolite on phosphate rock dissolution and extractable phosphorus in acid soil. Plant and Soil 208: 199-207.

Hendrix, J.W., Guo, B.Z. and An, Q. (1995). Divergence of mycorrhizal fungal communities in crop production systems. Plant and Soil 170: 131-140.

Kapoor, K.K. (1995). Phosphate mobilization through soil microorganism. In: Plant microbe intaraction in sustainable agriculture (eds. R.K Behl, A.L. Khurama and R.C. Dougra). CCS Harynan Agricultural University, Hisar and MMB, New Delhi, India: 46-61.

Kucey, R.M.N., Janzea, H.H. and Leggett, M.E. (1989). Microbially mediated increases in plant available phosphorus. Advances in Agronomy 42: 199-228.

Lange Ness, R.L. and Vlek, P.L.G. (2000). Mechanism of calcium and phosphate release from hydroxy-apatite by mycorrhizal hyphae. Soil Science Society of America, Journal 64:949-955.

Laskin, A.I. and Lechevalier, H.A. (1973). Microbial products. In: Handbook of microbiology (eds. A.I. Laskin and H.A. Lechevalier). CRC Press, Ohio, USA.

Martin, D.A., Perotto, S. and Bonfante, P. (2001). Mycorrhizal fungi: A fungal community at the interface between soil and roots. In: The Rhizhosphere (eds. R. Pinton, Z. Varanini and P. Nanniperi). Dekker, New York, USA: 263-296.

McAllister, C.B., Garcia-Romera, I., Martín, J., Godeas, A. and Ocampo, J.A. (1995). Interaction between Aspergillus niger van Tiegh. and Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe. New Phytologist 129: 309-316.

Phillips, J.M. and Hayman, D.S. (1970). Improved procedures for clearing roots and staining parasitic and VA mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55: 158-161.

Pikovskaya, R.I. (1948). Mobilization of phosphorus in connection with the vital activity of some microbial species. Microbiologia 17: 362-270.

Rao, A.V., Venkatestwarlu, B. and Kaul, P. (1982). Isolation of a phosphate dissolving soil actinomycete. Current Science 51: 1117-1118.

Reddy, M.S., Kumar, S., Babita, K. and Reddy, M.S. (2002). Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger. BioSource Technologies 84: 187-189.

Sanders, F.E. and Tinker, P.B. (1971). Mechanism of absorption of phosphate from soil by Endogone mycorrhizas. Nature 233: 278-279.

Schüßler, A., Scharzott, D. and Walker, C. (2001). A new fungal phylum, the Glomeromycota:phylogeny and evolution. Mycological Research 105: 1413-1421.

Shieh, T.R. and Ware, J.H. (1968). Survey of microorganisms order production of extracellular phytase. Applied Microbiology 16: 1348-1351.

Sieverding, E. (1991). Vesicular–arbuscular mycorrhiza management in tropical Agrosystems. Deutsche Gessellschaft fur Technische Zusammenarbeirt (GTZ). Eschborne, Germany.

Smith, S.E. and Read, D.J. (1997). Mycorrhizal Symbiosis. Academic Press London, UK.

Singh, H.P. and Singh, T.A. (1993). The interaction of rockphosphate, Bradyrhizobium, vesicular-arbuscular mycorrhizae and phosphate-solubilizing microbe on soybean grown in a sub Himalayan molhsol. Mycorrhiza 4: 37-43.

So, C.L. and Smith, S.E. (1988). Mycorrhizal growth responses: interaction between photon irradiance and phosphorus nutrition. New Phytologist 108: 305-314.

Taha, S.M., Mahmoud, S.A.Z., Halim El-Damaty, A. and Abd El-Hafez, A.M. (1969). Activity of phosphate- dissolving bacteria in Egyptian soils. Plant and Soil 31: 149-160.

Tarafdar, J.C. and Kumar, P. (1996). The role of vesicular-arbuscular mycorrhizal fungi on crop, tree and grasses grown in an arid environment. Journal of Arid Environments 34:197-203.

Toro, T.S. (1984). Estudio sobre la presencia de hongos formadores de micorrizas vesículo arbusculares en la caña de azúcar (Saccharum spp) en el Valle del Cauca. Tesis. Universidad de Caldas. Manizales.

Villegas, J. and Fortin, J. A. (2002). Phosphorus solubilization and pH changes as a results of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NO3 as nitrogen source. Canadian Journal of Botany 80: 571-576.

Walker, C., Mize, W. and McNabb, H.S. (1982). Populations of endogonaceous fungi at two populations in central Iowa. Canadian Journal of Botany 60: 2518-2529.

Whitelaw, M.A. (2000). Growth promotion of plants inoculated with phosphate–solubilizing fungi. Advances in Agronomy 69: 100-153.