Microwave-assisted alkali pretreatment of itchgrass for fermentable sugar production

Main Article Content

Ngohayon, J. M.

Abstract

Itchgrass, a relatively abundant weed in the Philippine cropland, was explored as a potential source of fermentable sugars. Microwave-assisted alkali pretreatment was used as a pretreatment method for itchgrass. The results showed that the treatment with high NaOH concentration (5% w/v), exposed to high microwave irradiation power (300 W), and subjected to a long reaction time (9 min) produced the most reducing sugar after pretreatment and saccharification. Additionally, the characterization of the pretreated itchgrass showed that 47.83% of the original lignin content and 41.02% of the original hemicellulose were removed after the pretreatment. Moreover, the microwave-assisted alkali pretreatment of itchgrass produced more reducing sugar after pretreatment and saccharification compared to the itchgrass pretreated with conventional heating alkali pretreatment. Overall results suggest that itchgrass is a good potential source of fermentable sugars, especially when pretreated using microwave-assisted alkali pretreatment.

Article Details

How to Cite
Ngohayon, J. M. (2025). Microwave-assisted alkali pretreatment of itchgrass for fermentable sugar production. International Journal of Agricultural Technology, 21(3), 1043–1058. https://doi.org/10.63369/ijat.2025.21.3.1043-1058
Section
Original Study

References

Aguilar-Reynosa, A., Romaní, A., Rodríguez-Jasso, R. M., Aguilar, C. N., Garrote, G. and Ruiz, H. A. (2017). Microwave heating processing as alternative of pretreatment in second- generation biorefinery: An overview. Energy Conversion and Management, 136:50-65. DOI: https://doi.org/10.1016/j.enconman.2017.01.004

Awan, T. H., Cruz, P. C. S. and Chauhan, B. S. (2014). Ecological significance of rice (Oryza sativa) planting density and nitrogen rates in managing the growth and competitive ability of itchgrass (Rottboellia cochinchinensis) in direct-seeded rice systems. Journal of Pest Science, 88:427-438. DOI: https://doi.org/10.1007/s10340-014-0604-4

Boonsombuti, A. and Luengnaruemitchai, A. (2013). Enhancement of enzymatic hydrolysis of corncob by microwave-assisted alkali pretreatment and its effect in morphology. Cellulose, 20:1957-1966. DOI: https://doi.org/10.1007/s10570-013-9958-7

Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K. B. and Ramakrishnan, S. (2011). Chemical and physicochemical pretreatment of lignocellulosic biomass: A Review. Enzyme Research, 2011:1-17. DOI: https://doi.org/10.4061/2011/787532

Chauhan, B. S. and Bajwa, A. A. (2015). Management of Rottboellia cochinchinensis and other weeds through sequential application of herbicides in dry direct-seeded rice in the Philippines. Crop Protection, 78:131-136. DOI: https://doi.org/10.1016/j.cropro.2015.09.007

Ethaib, S., Omar, R., Mazlina, M. K. S. and Radiah, A. B. D. (2020). Evaluation of the interactive effect pretreatment parameters via three types of Microwave-Assisted pretreatment and enzymatic hydrolysis on sugar yield. Processes, 8:787. DOI: https://doi.org/10.3390/pr8070787

Field, A. (2013). Discovering Statistics Using IBM SPSS Statistics: And Sex and Drugs and Rock “N” Roll. 4th Edition, Sage, Los Angeles, London, New Delhi.

Gabhane, J., William, S. P. M. P., Gadhe, A., Rath, R. and Narayan, A. (2014). Pretreatment of banana agricultural waste for bio-ethanol production: Individual and interactive effects of acid and alkali pretreatments with autoclaving, microwave heating and ultrasonication. Waste Management, 34:498-503. DOI: https://doi.org/10.1016/j.wasman.2013.10.013

Gupta, S. M., Kumar, K., Pathak, R. and Dwivedi, S. K. (2018). Catalysed-microwave based pretreatment of lignocellulosic biomass of Camelina Sativa L. for bio-fuel production. Defence Life Science Journal, 3:59-63. DOI: https://doi.org/10.14429/dlsj.3.11592

Janker-Obermeier, I., Sieber, V., Faulstich, M. and Schieder, D. (2012). Solubilization of hemicellulose and lignin from wheat straw through microwave-assisted alkali treatment. Industrial Crops and Products, 39:198-203. DOI: https://doi.org/10.1016/j.indcrop.2012.02.022

Jassim, K. N. (2013). Microwave-assisted acid and base pre-treatment of cellulose hydrolysis. Al Mustansiriyah Journal of Pharmaceutical Sciences, 13:16-21. DOI: https://doi.org/10.32947/ajps.v13i2.196

Jin, S., Zhang, G., Zhang, P., Li, F., Wang, S., Fan, S. and Zhou, S. (2016). Microwave assisted alkaline pretreatment to enhance enzymatic saccharification of catalpa sawdust. Bioresource Technology, 221:26-30. DOI: https://doi.org/10.1016/j.biortech.2016.09.033

Kamalini, A., Muthusamy, S., Ramapriya, R., Muthusamy, B. and Pugazhendhi, A. (2018). Optimization of sugar recovery efficiency using microwave assisted alkaline pretreatment of cassava stem using response surface methodology and its structural characterization. Journal of Molecular Liquids, 254:55-63. DOI: https://doi.org/10.1016/j.molliq.2018.01.091

Klein, M., Neel, I., Perkas, N. and Gedanken, A. (2016). Bioethanol production from Ficus religiosa leaves using microwave irradiation. Journal of Environmental Management, 177:20-25. DOI: https://doi.org/10.1016/j.jenvman.2016.03.050

Li, H., Qu, Y., Yang, Y., Chang, S. and Xu, J. (2016). Microwave irradiation – A green and efficient way to pretreat biomass. Bioresource Technology, 199:34-41. DOI: https://doi.org/10.1016/j.biortech.2015.08.099

Loow, Y., Wu, T. Y., Yang, G. H., Jahim, J. M., Teoh, W. H. and Mohammad, A. W. (2016). Role of energy irradiation in aiding pretreatment of lignocellulosic biomass for improving reducing sugar recovery. Cellulose, 23:2761-2789. DOI: https://doi.org/10.1007/s10570-016-1023-x

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31:426-428. DOI: https://doi.org/10.1021/ac60147a030

Pooja, N. S. and Padmaja, G. (2017). Microwave-assisted alkali delignification coupled with non-ionic surfactant effect on the fermentable sugar yield from agricultural residues of cassava. International Journal of Environment, Agriculture and Biotechnology, 2:630-642. DOI: https://doi.org/10.22161/ijeab/2.2.10

Rodrigues, T. H. S., Rocha, M. V. P., de Macedo, G. R. and Goncalves, L. R. B. (2011). Ethanol production from cashew apple bagasse: improvement of enzymatic hydrolysis by microwave-assisted alkali pretreatment. Applied Biochemistry and Biotechnology, 164: 929-943. DOI: https://doi.org/10.1007/s12010-011-9185-3

Rodríguez, A. M., Prieto, P., De La Hoz, A., Díaz-Ortiz, Á., Martín, D. R. and García, J. I. (2015). Influence of polarity and activation energy in Microwave-Assisted Organic Synthesis (MAOS). ChemistryOpen, 4:308-317. DOI: https://doi.org/10.1002/open.201402123

Rojas-Sandoval, J. and Acevedo-Rodríguez, P. (2022). Rottboellia cochinchinensis (itch grass) [Dataset]. In CABI Compendium. Retried from https://doi.org/10.1079/cabicompendium.47782 DOI: https://doi.org/10.1079/CPC.47782.20210100343

Rubab, N., Ghazanfar, M., Adnan, S., Ahmad, I., Shakir, H. A., Khan, M., Franco, M. and Irfan, M. (2023). Microwave-assisted alkali pretreatment of Haplophragma adenophyllum leaves for bioethanol production. Cellulose Chemistry and Technology, 57:345-358. DOI: https://doi.org/10.35812/CelluloseChemTechnol.2023.57.30

Saini, A., Aggarwal, N. K., Sharma, A. and Yadav, A. (2015). Prospects for irradiation in cellulosic ethanol production. Biotechnology Research International, 2015:1-13. DOI: https://doi.org/10.1155/2015/157139

Shang, H., Ye, P., Yue, Y., Wang, T., Zhang, W., Omar, S. and Wang, J. (2019). Experimental and theoretical study of microwave enhanced catalytic hydrodesulfurization of thiophene in a continuous-flow reactor. Frontiers of Chemical Science and Engineering, 13:744-758. DOI: https://doi.org/10.1007/s11705-019-1839-7

Sharma, S., Tsai, M., Sharma, V., Sun, P., Nargotra, P., Bajaj, B. K., Chen, C. and Dong, C. (2022). Environment Friendly Pretreatment Approaches for the Bioconversion of Lignocellulosic Biomass into Biofuels and Value-Added Products. Environments, 10:6. DOI: https://doi.org/10.3390/environments10010006

Shukla, A., Kumar, D., Girdhar, M., Kumar, A., Goyal, A., Malik, T. and Mohan, A. (2023). Strategies of pretreatment of feedstocks for optimized bioethanol production: distinct and integrated approaches. Biotechnology for Biofuels and Bioproducts, 16:1-33. DOI: https://doi.org/10.1186/s13068-023-02295-2

Singh, R., Tiwari, S., Srivastava, M. and Shukla, A. (2014). Microwave assisted alkali pretreatment of rice straw for enhancing enzymatic digestibility. Journal of Energy, 2014:1-7. DOI: https://doi.org/10.1155/2014/483813

Sudiana, I. N., Mitsudo, S., Susilowati, P. E., Sutiari, D. K., Arsana, M. W., Firihu, M. Z., Ngkoimani, L. O., Aba, L., Hasan, E. S., Cahyono, E., Sabchevski, S., Aripin, H. and Suastika, K. G. (2017). Fast microwave-assisted pretreatment for bioconversion of sawdust lignocellulose to glucose. Journal of Physics: Conference Series, 846:1-6. DOI: https://doi.org/10.1088/1742-6596/846/1/012013

Sun, S., Sun, S., Cao, X. and Sun, R. (2016). The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresource Technology, 199:49-58. DOI: https://doi.org/10.1016/j.biortech.2015.08.061

Tiwari, G., Sharma, A. and Sharma, S. (2016). Saccharification of Mango peel wastes by using microwave assisted alkali pretreatment to enhance its potential for bioethanol production. Indian Institute of Technology Delhi. Retrieved from http://wretc.in/downloads/abstracts/2016/Garima_Tiwari_7thwretc.pdf

Tiwari, G., Sharma, A., Kumar, A. and Sharma, S. (2018). Assessment of microwave-assisted alkali pretreatment for the production of sugars from banana fruit peel waste. Biofuels, 2018:1-8. DOI: https://doi.org/10.1080/17597269.2018.1442665

Utoro, P. A. R., Alwi, M., Witoyo, J. E., Argo, B. D., Yulianingsih, R. and Muryanto, N. (2023). Impact of NAOH concentration and pretreatment time on the lignocellulose composition of sweet sorghum bagasse for Second-Generation bioethanol production. Advances in Biological Sciences Research, 31:198-206. DOI: https://doi.org/10.2991/978-94-6463-180-7_22

Wardani, A. K., Tanaka, N. C. and Sutrisno, A. (2020). The conversion of lignocellulosic biomass to bioethanol: pretreatment technology comparison. Earth and Environmental Science, 475:012081. DOI: https://doi.org/10.1088/1755-1315/475/1/012081

Yin, X., Wei, L., Pan, X., Liu, C., Jiang, J. and Wang, K. (2021). The pretreatment of lignocelluloses with green solvent as biorefinery preprocess: A minor review. Frontiers in Plant Science, 12:670061. https://doi.org/10.3389/fpls.2021.670061 DOI: https://doi.org/10.3389/fpls.2021.670061