Expression of Genes Associated with the Growth of Symbiotically Grown Dendrobium bigibbum Lindl.

Main Article Content

MARY JHANE VALENTINO
Sotto, R. C.
Dionisio-Sese, M. L.
Lantican, N. B.
Bautista, N. S.2

Abstract

The study evaluated the expression of genes related to the growth of symbiotically grown Dendrobium bigibbum were evaluated (biosynthesis/ signal transduction of auxin and gibberellins, common symbiotic pathway, and mycorrhizal-induced putative genes). Results revealed that the relative expression of genes were upregulated in D. bigibbum co-cultured with Volvariella volvacea. Meanwhile, in Lentinus tigrinus, DOSAUR71(seedling stage) was downregulated and the cycle treshhold value for DoSWEET14 was unchanged. In D. bigibbum co-cultured with Pleurotus florida, downregulation of GA3ox (seedling stage), DOSAUR71 (rhizoid and seedling stages) and DoIPM (rhizoid stage) were observed and unchanged relative gene expressions of DoIPM (seedling stage) and DoSWEET14 (seedling stage) were recorded. Thus, both V. volvacea and L. tigrinus formed compatible mycorrhizal association with D. bigibbum which caused increase in the growth of D. bigibbum during rhizoid and seedling stages.

Article Details

How to Cite
VALENTINO, M. J., Sotto, R. C., Dionisio-Sese, M. L., Lantican, N. B., & Bautista, N. S.2. (2025). Expression of Genes Associated with the Growth of Symbiotically Grown Dendrobium bigibbum Lindl. International Journal of Agricultural Technology, 21(3), 1211–1222. https://doi.org/10.63369/ijat.2025.21.3.1211-1222
Section
Original Study

References

Ariel, F., Brault-Hernandez, M., Laffont, C., Huault, E., Brault, M. and Plet, J. (2012). Two direct targets of cytokinin signaling regulate symbiotic nodulation in Medicago truncatula. Plant Cell, 24:3838-3852.

Balasubramanian, V., Vashisht, D., Cletus, J. and Sakthivel, N. (2012). Plant β-1, 3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi. Biotechnology letters, 34:1983-1990.

Barker, S. and Tagu, S. (2000). The roles of auxins and cytokinins in mycorrhizal symbioses. Journal of Plant Growth Regulation, 19:144-154.

Bautista, N. S. and Valentino, M. J. G. (2023). Symbiotic propagation of Dendrobium bigibbum Lindl. with selected saprophytic Basidiomycota. Biodiversitas 2023, 24:3519-3527.

Breia, R., Conde, A., Badim. H., Fortes, A. M., Geros, H. and Granell, A. (2021). Plant SWEETs: From sugar transport to plant–pathogen interaction and more unexpected physiological roles. Plant Physiology, 186:836-852.

Brundrett, M. (2002). Coevolution of roots and mycorrhizas of land plants. New Phytologist, 154: 275-304.

Cameron, D. D., Leake, J. R. and Read, D. J. (2006). Mutualistic mycorrhiza in orchids: evidence from plant–fungus carbon and nitrogen transfers in the green leaved terrestrial orchid Goodyera repens. New Phytologist, 171:40-416.

Cao, X., Yang, H., Shang, C., Ma, S., Liu, L. and Cheng, J. (2019). The roles of auxin biosynthesis YUCCA gene family in plants. International Journal of Molecular Sciences, 16:6343.

Chanlud, E. and Morel, J. B. (2016). Plant hormones: A Fungal Point of View. Molecular Plant Pathology ,17:1289-1297.

Chen, J., Tang, Y., Kohler, A., Lebreton, A., Xing, Y., Zhou, D., Li, Y., Martin, F. M. and Guo, S. (2022). Comparative transcriptomics analysis of the symbiotic germination of D. officinale (orchidaceae) with emphasis on plant cell wall modification and cell wall-degrading enzymes. Frontiers in Plant Science, 13:880600.

Chen, J., Yan, B., Tang, Y., Xing, Y., Li, Y., Zhou, D. and Guo, S. (2020). Symbiotic and asymbiotic germination of Dendrobium officinale (Orchidaceae) respond differently to exogenous gibberellins. International Journal of Molecular Sciences, 21:6104.

Cowan, A. K. (2006). Phospholipids as plant growth regulators. Plant growth Regulation, 48:97-109.

Dar, A. A., Choudhury, A. R., Kancharla, P. K. and Arumugam, N. (2017). The FAD2 gene on plants: Occurrence, regulation and role. Frontiers in Plant Science. Secondary plant metabolism and chemodiversity, 8:1789.

Fukamizo, T. and Shinya, S. (2019). Chitin/Chitosan-active enzymes involved in plant–microbe interactions. In: Yang Q, Fukamizo T eds. Targeting chitin-containing organisms. Advances in experimental medicine and biology, 1142:253-272.

He, H., Liang, G., Lu, S., Wang, P., Liu, T. and Ma, Z. (2019). Genome-wide identification and expression analysis of GA2ox, GA3ox, and GA20ox are related to gibberellin oxidase genes in grape (Vitis vinifera L.). Genes, 10:680.

Heo, J. O., Chang, K. S., Kim, I. A., Lee, M. H., Lee, S. A., Song, S. K., Lee, M. M. and Lim, J. (2011). Funneling of gibberellin signaling by the GRAS transcription regulator SCARECROW-LIKE3 in the Arabidopsis root. Proceedings of the National Academy of Sciences (PNAS), 108:2166-2171.

Kanno, Y., Oikawa, T., Chibay, Y., Ishimaru, T., Shimizu, N. and Sano. (2016). AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nature Communications, 7:13245.

Livak, K. J. and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25:402-408.

Meixner, C. J., Ludwig-Muller, O., Miersch, Gresshoff, P., Staehelin, C. and Vierheilig, H. (2005). Lack of mycorrhizal autoregulation and phytohormonal changes in the super nodulating soybean mutant nts1007. Planta, 222:709-715.

Mohammadi, M. and Karr, A. (2002). α-1,3-glucanase and chitinase activities in soybean root nodules. Journal of Plant Physiology, 159:245-256.

Novak, S. D. and Whitehouse, G. A. (2013). Auxin regulates first leaf development and promotes the formation of protocorm trichomes and rhizome-like structures in developing seedlings of Spathoglottis plicata (Orchidaceae). AoB PLANTS 5: pls053.

Perotto, S. M., Rodda, Benetti, A., Sillo, F., Rcole, E., Rodda, M., Girlanda Murat, M. and Balestrini, C. M. (2014). Gene expression in mycorrhizal orchid protocorms suggests a friendly plant–fungus relationship. Planta, 239:1337-1349.

Rasmussen, H. N. and Whigham, D. F. (2002). Phenology of roots and mycorrhizae in orchid species differing in phototrophic strategy. New Phytologist, 154:797-807.

Rasmussen, H. N. (1995). Terrestrial orchids: from seed to mycotrophic plant. Cambridge University Press: Cambridge, UK.

Reinecke, D. M., Wickramarathna, A. A., Ozga, J. A., Kurepin, L. V., Good and Pharis, R. P. (2013). Gibberellin 3-oxidase Gene Expression Patterns Influence Gibberellin Biosynthesis, Growth, and Development in Pea. Plant Physiology, 163:929-945.

Ren, H. and Gray, W. M. (2015). SAUR proteins as effectors of hormonal and environmental signals in plant growth. Molecular Plant, 8:1153-1164.

Spartz, A. K., Ren, H., Park, M. Y., Grandt, K. N., Lee, S. H., Murphy, A. S., Sussman, M. R., Overvoorde, P. J. and Gray, W. F. (2014). SAUR inhibition of PP2C-D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in Arabidopsis. The Plant Cell, 26:2129-2142.

Stamm, P. and Kumar, P. P. (2013). Auxin and gibberellin responsive Arabidopsis SMALL AUXIN UP RNA36 regulate hypocotyl elongation in the light. Plant Cell Reports, 32:759-769.

Steinfort, U., Verdugo, G., Besoainx. and Cisternas, M. A. (2010). Mycorrhizal association and symbiotic germination of the terrestrial orchid Bipinnula fimbriata (Poepp.) Johnst (Orchidaceae). Flora, 205:811-817.

Taylor, D. L., Bruns, T. D. and Hodges, S. A. (2004). Evidence for mycorrhizal races in a cheating orchid. Proceedings of the Royal Society B: Biological Sciences, 271:35-43.

Tirichine L., Sandal, N., Madsen, L. H., Radutoiu, S., Albrektsen, S. A. S. and Sato, S. (2007). A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315:104-107.

Utami, E. S. and Hariyanto. S. (2019). In vitro seed germination and seedling Development of a rare Indonesian native orchid Phalaenopsis amboinensis J.J.Sm. Scientifica, 8105138.

Waterman, R. J., Pauw, A., Barraclough, T. G. and Savolainen, V. (2009). Pollinators underestimated: a molecular phylogeny reveals widespread floral convergence in oil-secreting orchids (sub-tribe Coryciinae) of the Cape of South Africa. Molecular Phylogenetics and Evolution, 51:100-110.

Yamaguchi, S., Sun, T. P., Kawaideh and Kamiya, Y. (1998). The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis. Plant Physiology, 116: 1271-1278.

Yin, Y., Li, J., Guo, B., Li, L., Ma, G., Eu, K. and Zeng, S. (2022). Exogenous GA3 promotes flowering in Paphiopedilum callosum (Orchidaceae) through bolting and lateral flower development regulation. Horticulture Research, 9.

Zhang, Z. L., Ogawa, M., Fleeta, C. M., Zentellaa, R., Hua, J., Jung, Heo, O., Limc, C. J., Kamiyab, Y., Yamaguchib, S. and Suna T. P. (2011). SCARECROW-LIKE 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis. Proceedings of the National Academy of Sciences (PNAS), 108:2160-2165.

Zhao, M. M., Zhang, G., Zhang, D. W., Hsiao, Y. Y. and Guo, S. X. (2013). ESTs analysis reveals genes involved in symbiotic seed germination in Dendrobium officinale. PLoS One, 8:e72705.