Production of herbal kombucha with agarwood (Aquilaria crassna Pierre ex Lec.) leaves and its biological properties

Main Article Content

Suwanposri, A.
Khamphinit, W.
Sonthichai, P.
Maliyam, R.
Charoensook, K.
Boonna, S.

Abstract

Herbal kombucha from roselle (Hibiscus sabdariffa L.) and peppermint (Mentha × piperita) mixed with agarwood leaves (Aquilaria crassna Pierre ex Lec.) was produced and its biological activity was analyzed. After 14 days of static fermentation, it was found that all kombucha formulations had acetic acid levels ranging from 0.28±0.01% to 0.41±0.00%, alcohol levels from 1.07±0.15% to 1.32±0.08%, and total phenolic content from 3,577.78±96.86 to 8,066.67±905.13 µg/mL. DPPH scavenging activity ranged from 56.02±0.11% to 84.91±0.84%. The population of acetic acid bacteria, lactic acid bacteria, and yeast ranged from 7.75±0.05 to 7.97±0.01 log CFU/mL, 7.63±0.07 to 7.98±0.02 log CFU/mL, and 7.59±0.04 to 7.89±0.017 log CFU/mL, respectively, which meet the standards of the Food and Drug Administration. Kombucha made from roselle and roselle mixed with agarwood leaves at concentrations of 0.01% and 0.05% inhibited Staphylococcus aureus and Escherichia coli. Additionally, sensory evaluation scores for overall acceptability were in the range of like slightly to like moderately. It indicated that the production of  herbal kombucha with agarwood leaves couble be suitable for commercial development.

Article Details

How to Cite
Suwanposri, A., Khamphinit, W., Sonthichai, P., Maliyam, R., Charoensook, K., & Boonna, S. (2025). Production of herbal kombucha with agarwood (Aquilaria crassna Pierre ex Lec.) leaves and its biological properties . International Journal of Agricultural Technology, 21(3), 1177–1196. https://doi.org/10.63369/ijat.2025.21.3.1177-1196
Section
Original Study

References

Adam, A. Z., Lee, S. Y. and Mohamed, R. (2017). Pharmacological properties of agarwood tea derived from Aquilaria (Thymelaeaceae) leaves: an emerging contemporary herbal drink. Journal of Herbal Medicine, 10:37-44.

Amarasinghe, H., Weerakkody, N. S. and Waisundara, V. Y. (2018). Evaluation of physicochemical properties and antioxidant activities of kombucha “Tea Fungus” during extended periods of fermentation. Food Science and Nutrition, 6:659-665.

Anantachoke, N., Duangrat, R., Sutthiphatkul, T., Ochaikul, D. and Mangmool, S. (2023). Kombucha beverages produced from fruits, vegetables, and plants: a review on their pharmacological activities and health benefits. Foods, 12:1818.

Aung, T. and Eun, J. B. (2021). Production and characterization of a novel beverage from laver (Porphyra dentata) through fermentation with kombucha consortium. Food chemistry, 350:129274.

Baschali, A., Tsakalidou, E., Kyriacou, A., Karavasiloglou, N. and Matalas, A. L. (2017). Traditional low-alcoholic and non-alcoholic fermented beverages consumed in European countries: a neglected food group. Nutrition Research Reviews, 30:1-24.

Bortolomedi, B. M., Paglarini, C. S. and Brod, F. C. A. (2022). Bioactive compounds in kombucha: A review of substrate effect and fermentation conditions. Food Chemistry, 385:132719.

Chakravorty, S. Bhattacharya, S., Chatzinotas, A., Chakraborty, W., Bhattacharya, D. and Gachhui, R. (2016). Kombucha tea fermentation: Microbial and biochemical dynamics. International. Journal of Food Microbiology, 220:63-72.

Chu, S. C. and Chen, C. (2006). Effects of origins and fermentation time on the antioxidant activities of kombucha. Food Chemistry, 98:502-507.

Coelho, R. M. D., Almeida, A. L. D., Amaral, R. Q. G., Mota, R. N. D. and Sousa, P. H. M. (2020). Kombucha: review. International Journal of Gastronomy and Food Science, 22:100272.

Da-Costa-Rocha I., Bonnlaender, B., Sievers, H., Pischel, I. and Heinrich, M. (2014). Hibiscus sabdariffa L. A phytochemical and pharmacological review. Food Chemistry, 165:424-443.

Greenwalt, C. J., Ledford, R. A. and Steinkraus, K. H. (1998). Determination and characterization of the antimicrobial activity of the fermented tea kombucha. LWT-Food Science and Technology, 31:291-296.

Greenwalt, C. J., Steinkraus, K. H. and Ledford, R. A. (2000). Kombucha, the fermented tea: microbiology, composition, and claimed health effects. Journal of food protection, 63:976-981.

International Food Information Council (IFIC). (2024). Food & beverage trends include mood-supporting foods, function-focused hydration, protein-packed snacking, the rise of AI, and third-culture cuisines. Retrieved from https://ific.org/media-information/press-releases/2024-food-beverage-trends/

Ito, H. and Ito, M. (2022). Comparison of phenolic compounds contained in Aquilaria leaves of different species. Journal of Natural Medicines, 76:693-702.

Jayabalan, R., Marimuthu, S. and Swaminathan, K. (2007). Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chemistry, 10:392-398.

Kayisoglu, S. and Coskun, F. (2020). Determination of physical and chemical properties of kombucha teas prepared with different herbal teas. Food Science and Technology, 41:393-397.

Kitwetcharoen, H., Phung, L. T., Klanrit, P., Thanonkeo, S., Tippayawat, P., Yamada, M. and Thanonkeo, P. (2023). Kombucha healthy drink-recent advances in production, chemical composition and health benefits. Fermentation, 9:48.

Leonarski, E., Cesca, K., Zanella, E., Stambuk, B. U., de Oliveira, D. and Poletto, P. (2021). Production of kombucha-like beverage and bacterial cellulose by acerola byproduct as raw material. Food Science and Technology, 135:110075.

Lin, Y., Zhang, W., Li, C., Sakakibara, K., Tanaka, S. and Kong, H. (2012). Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass and Bioenergy, 47:395-401.

Liu, C. H., Hsu, W. H., Lee, F. L. and Liao, C. C. (1996). The isolation and identification of microbes from a fermented tea beverage, Haipao, and their interactions during Haipao fermentation. Food Microbiology, 13:407-415.

Ludwig, W., Schleifer, K. H. and Whitman, W. B. (2009). Lactobacillales. In: De Vos, P., Garrity, G., Jones, D., Krieg, N.R., Ludwig, W. and Rainey, F. A. ed. Bergey’s Manual of Systematic Bacteriology: Volume Three: The Firmicutes, New York, Springer, pp. 464-735.

MarketsandMarkets. (2024). Kombucha market. Retrieved from https://www.marketsand markets.com/Market-Reports/kombucha-market-211406364.

Marsh, A. J., O’Sullivan, O., Hill, C., Ross, R. P. and Cotter, P. D. (2014). Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiology, 38:171-178.

Masłowski, M., Aleksieiev, A., Miedzianowska, J. and Strzelec, K. (2021). Potential application of peppermint (Mentha piperita L.), german chamomile (Matricaria chamomilla L.) and yarrow (Achillea millefolium L.) as active fillers in natural rubber biocomposites. International Journal of Molecular Sciences, 22:7530.

McKay, D. L. and Blumberg, J. B. (2006). A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytotherapy Research, 20:619-633.

Monteiro, M. J. P., Costa, A. I. A., Fliedel, G., Cissé, M., Bechoff, A., Pallet, D., Tomlins, K. and Pintado, M. M. E. (2017). Chemical-sensory properties and consumer preference of hibiscus beverages produced by improved industrial processes. Food Chemistry, 225:202-212.

Sabel, A., Bredefeld, S., Schlander, M. and Claus, H. (2017). Wine phenolic compounds: Antimicrobial properties against yeasts, lactic acid and acetic acid bacteria. Beverages, 3:29.

Sena, G., Nath, M., Sarkar, N. and Maity, S. (2020). Bioactive components of tea. Archives of Food and Nutritional Science, 4:001-009.

Shimada, K., Fujikawa, K., Yahara, K. and Nakamura, T. (1992). Antioxidative properties of xanthans on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry, 40:945-948.

Surjanto, S., Batubara, R. and Rangkuti, D. S. (2019). Safety test of agarwood leaves tea (Aquilaria malaccencis lamk.) through skin sensitization test on Albino Rabbit. Open Access Macedonian Journal of Medical Sciences, 7:3896-3899.

Sutthiphatkul, T., Mangmool, S., Rungjindamai, N. and Ochaikul, D. (2023). Characteristics and antioxidant activities of kombucha from black tea and roselle by a mixed starter culture. Current Applied Science and Technology, 23:1-15.

Talebi, M., Frink, L. A., Patil, R. A. and. Armstrong, D. W. (2017). Examination of the varied and changing ethanol content of commercial kombucha products. Food Analytical Methods, 10:4062-4067.

Tran, T., Grandvalet, C., Verdier, F., Martin, A., Alexandre, H. and Tourdot-Maréchal R. (2020) Microbial dynamics between yeasts and acetic acid bacteria in kombucha: impacts on the chemical composition of the beverage. Foods, 9:1-25.

Troitino, C. (2017). Kombucha 101: demystifying the past, present and future of the fermented tea drink. Retrieved from https://www.forbes.com/sites/christinatroitino/2017/02/01/ kom bucha-101-demystifying-the-past-present-and-future-of-the-fermented tea-drink/

Vargas, B. K., Fabricio, M. F. and Ayub, M. A. Z. (2021). Health effects and probiotic and prebiotic potential of kombucha: A bibliometric and systematic review. Food Bioscience, 44:101332.

Wong, S. P., Leong, L. P. and Koh, J. H. W. (2006). Antioxidant activities of aqueous extracts of selected plants. Food Chemistry, 99:775-783.

Yang, Z. W., Ji, B. P., Zhou, F., Li. B., Luo, Y., Yang, L. and Li, T. (2009). Hypocholesterolaemic and antioxidant effects of kombucha tea in High-cholesterol Fed mice. Journal of the Science of Food and Agriculture, 89:150-156.

Zhang, Z., Lv, G., Pan, H., Fan, L., Soccol, C. R. and Pandey, A. (2012). Production of powerful antioxidant supplements via solid-state fermentation of wheat (Triticum aestivum Linn.) by Cordyceps militaris. Food Technology and Biotechnology, 50:32-39.

Zhou, M., Wang, H., Suolangjiba, K. J. and Yu, B. (2008) Antinociceptive and anti-inflammatory activities of Aquilaria sinensis (Lour.) Gilg. Leaves extract. Journal of Ethnopharmacology, 117:345-350.