Combined Larvicidal Efficacy of Rhinacanthin-C, Luteolin, Quercetin, and Binary Mixtures of Rhinacanthus nasutus, Andrographis paniculata and Vernonia cinerea Extracts against Aedes aegypti Mosquito

Main Article Content

Duangkaew, P.
Phouyfung, P.
Jirakanjanakit, N.
Rongnoparut, P.

Abstract

Phytochemicals have been shown to possess insecticidal activities against insects and mosquitoes. We tested toxicities of the mixtures of Rhinacanthus nasutus, Andrographis paniculata and Vernonia cinerea extracts together with their major compounds against Aedes aegypti mosquito, collected from Nakhon Pathom, Thailand. The mosquitoes were observed tolerant to pyrethroids and had increased activities of detoxification enzymes compared to the susceptible Bora strain, indicating detoxicification system could be responsible for tolerance to pyrethroid insecticides. Among the extracts, R. nasutus hexane extract showed the highest larvicidal activity toward Ae. aegypti fourth-instar larvae (LC50=68.52 µg/ml). Synergism in toxicity was observed on binary mixtures of R. nasutus with A. paniculata hexane fraction and of R. nasutus hexane with V. cinerea ethyl acetate fraction. Mixtures of rhinacanthin-C and luteolin or quercetin flavonoids, the major compounds of R. nasutus and V. cinerea, respectively, revealed potent larvicidal activity. Effect of those extracts and compounds against detoxification enzyme activities suggested that the observed larvicidal synergism might be due to the combination of insecticidal property of rhinacanthin-C and inhibition of insecticide detoxification enzymes by the respective phytochemical compounds. This study should have an implication in development of eco-friendly strategy in resistance mosquito vector control.

Article Details

How to Cite
Duangkaew, P., Phouyfung, P., Jirakanjanakit, N., & Rongnoparut, P. (2018). Combined Larvicidal Efficacy of Rhinacanthin-C, Luteolin, Quercetin, and Binary Mixtures of Rhinacanthus nasutus, Andrographis paniculata and Vernonia cinerea Extracts against Aedes aegypti Mosquito. International Journal of Agricultural Technology, 14(3), 271–286. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/5899
Section
Original Study

References

Arivoli, S., Tennyson, S. and Martin, J. J. (2011). Larvicidal efficacy of Vernonia cinerea (L.) (Asteraceae) leaf extracts against the filarial vector Culex quinquefasciatus Say (Diptera: Culicidae). Journal of Biopesticides 4:37-42.

Ayres, C. F. J. (2016). Identification of Zika virus vectors and implications for control. Lancet 16:278-279.

Brogdon, W. G. (1984). Mosquito protein microassay. I. Protein determinations from small portions of single-mosquito homogenates. Comparative biochemistry and physiology Part B: Comparative biochemistry 79:457-459.

Chao, W. W. and Lin, B. F. (2010). Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian). Chinese Medicine 5:17.

Geris, R., Ribeiro, P. R., Brandão, M. S., Silva, H. H. G. and Silva, T. G. (2012). Bioactive natural products as potential candidates to control Aedes aegypti, the vector of dengue. In: Atta-ur-Rahman, F. R. S. (Ed), Studies in Natural Products Chemistry. Elsevier Science BV, Amsterdam. pp. 277-376.

Govindarajan, M. (2011). Evaluation of Andrographis paniculata Burm. f. (Family: Acanthaceae) extracts against Culex quinquefasciatus (Say.) and Aedes aegypti (Linn.) (Diptera: Culicidae). Asian Pacific Journal of Tropical Medicine 4:176-181.

Govindarajan, M. and Sivakumar, R. (2012). Adulticidal and repellent properties of indigenous plant extracts against Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Parasitology Research 110:1607-1620.

Hemingway, J. and Ranson, H. (2000). Insecticide resistance in insect vectors of human disease. Annual Review of Entomology 45:371-391.

Jewess, P. J., Chamberlain, K., Boogaard, A. B., Devonshire, A. L. and Khambay, B. P. (2002). Insecticidal 2-hydroxy-3-alkyl-1,4-naphthoquinones: correlation of inhibition of ubiquinol cytochrome c oxidoreductase (complex III) with insecticidal activity. Pest Management Science 58:243-247.

Jirakanjanakit, N., Rongnoparut, P., Saengtharatip, S., Chareonviriyaphap, T., Duchon, S., Bellec, C. and Yoksan, S. (2007a). Insecticide susceptible/resistance status in Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Thailand during 2003-2005. Journal of Economic Entomology 100:545-550.

Jirakanjanakit, N., Saengtharatip, S., Rongnoparut, P., Duchon, S., Bellec, C. and Yoksan, S. (2007b). Trend of temephos resistance in Aedes (Stegomyia) mosquitoes in Thailand during 2003-2005. Environmental Entomology 36:506-511.

Kamaraj, C., Rahuman, A. A. and Bagavan, A. (2008). Antifeedant and larvicidal effects of plant extracts against Spodoptera litura (F.), Aedes aegypti L. and Culex quinquefasciatus Say. Parasitology Research 103:325-331.

Kishore, N., Mishra, B. B., Tiwari, V. K., Tripathi, V. and Lall, N. (2014). Natural products as leads to potential mosquitocides. Phytochemistry Reviews 13:587-627.

Komalamista, N., Trongtokit, Y., Rongsriyam, Y. and Apiwathanasorn, C. (2005). Screening for larvicidal activity in some Thai plants against four mosquito vector species. Southeast Asian Journal of Tropical Medicine and Public Health 36:1412-1422.

Kotewong, R., Duangkaew, P., Srisook, E., Sarapusit, S. and Rongnoparut, P. (2014). Structure–function relationships of inhibition of mosquito cytochrome P450 enzymes by flavonoids of Andrographis paniculata. Parasitology Research 113:3381-3392.

Kotewong, R., Pouyfung, P., Duangkaew, P., Prasopthum, A. and Rongnoparut, P. (2015). Synergy between rhinacanthins from Rhinacanthus nasutus in inhibition against mosquito cytochrome P450 enzymes. Parasitology Research 114:2567-2579.

Liu, S. Q., Scott, I. M., Pelletier, Y., Kramp, K., Durst, T., Sims, S. R. and Arnason, J. T. (2014). Dillapiol: a pyrethrum synergist for control of the Colorado potato beetle. Journal of Economic Entomology 107:797-805.

Llinás, G. A., Seccacini, E., Gardenal, C. N. and Licastro, S. (2010). Current resistance status to temephos in Aedes aegypti from different regions of Argentina. Memórias do Instituto Oswaldo Cruz 105:113-116.

Loewe, S. (1953). The problem of synergism and antagonism of combied drugs. Arzneimittelforschung 3:285-290.

Marcombe, S., Mathieu, R. B., Pocquet, N., Riaz, M. A., Poupardin, R., Sélior, S., Darriet, F., Reynaud, S., Yébakima, A., Corbel, V., David, J. P. and Chandre, F. (2012). Insecticide resistance in the dengue vector Aedes aegypti from Martinique: distribution, mechanisms and relations with environmental factors. PLoS ONE 7:e30989. doi:10.1371/journal. pone.0030989.

Marcondes, C. B. and Ximenes, M. F. (2015). Zika virus in Brazil and the danger of infestation by Aedes (Stegomyia) mosquitoes. Revista da Sociedade Brasileira de Medicina Tropical 49:4-10.

Nelson, A. C. and Kursar, T. A. (1999). Interactions among plant defense compounds: a method for analysis. Chemoecology 9:81-92.

Pethuan, S., Jirakanjanakit, N., Saengtharatip, S., Chareonviriyaphap, T., Kaewpa, D. and Rongnoparut, P. (2007). Biochemical studies of insecticide resistance in Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Thailand. Tropical Biomedicine 24:7-15.

Pethuan, S., Duangkaew, P., Sarapusit, S., Srisook, E. and Rongnoparut, P. (2012). Inhibition against mosquito cytochrome P450 enzymes by rhinacanthin-A, -B, and -C elicits synergism on cypermethrin cytotoxicity in Spodoptera frugiperda cells. Journal of Medical Entomology 49:993-1000.

Polson, K. A., Brogdon, W. G., Rawlins, S. C. and Chadee, D. D. (2011). Characterization of insecticide resistance in Trinidadian strains of Aedes aegypti mosquitoes. Acta tropica 117:31-38.

Pouyfung, P., Prasopthum, A., Sarapusit, S., Srisook, E. and Rongnoparut, P. (2014). Mechanism-based inactivation of cytochrome P450 2A6 and 2A13 by Rhinacanthus nasutus constituents. Drug Metabolism and Pharmacokinetics 29:75-82.

Prasopthum, A., Pouyfung, P., Sarapusit, S., Srisook, E. and Rongnoparut, P. (2015). Inhibition effects of Vernonia cinerea active compounds against cytochrome P450 2A6 and human monoamine oxidases, possible targets for reduction of tobacco dependence. Drug Metabolism and Pharmacokinetics 30:174-181.

Rajkumar, S., Jebanesan, A. and Nagarajan, R. (2012). Synergistic effect of Andrographis echioides and Cadaba trifoliata leaf extracts against larva of dengue mosquito Aedes aegypti L. Asian Pacific Journal of Tropical Biomedicine 2:S1588-S1591.

Ribeiro, K. A., de Carvalho, C. M., Molina, M. T., Lima, E. P., López-Montero, E., Reys, J. R., de Oliveira, M. B., Pinto, A. V., Santana, A. E. and Goulart, M. O. (2009). Activities of naphthoquinones against Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae), vector of dengue and Biomphalaria glabrata (Say, 1818), intermediate host of Schistosoma mansoni. Acta Tropica 111:44-50.

Rongnoparut, P., Duangkaew, P., Prasopthum, A. and Pouyfung, P. (2016). Structure-Function Relationships of Phytochemicals in Control of Mosquito Vectors. Current Organic Chemistry 20:2649-267.

Shaalan, E. A., Canyon, D. V., Younes, M. W., Abdel-Wahab, H. and Mansour, A. H. (2005b) A review of botanical phytochemicals with mosquitocidal potential. Environment International 31:1149-1166.

Sreelatha, T., Hymavathi, A., Murthy, J. M., Rani, P. U., Rao, J. M. and Babu, K. S. (2010). Bioactivity-guided isolation of mosquitocidal constituents from the rhizomes of Plumbago capensis Thunb. Bioorganic and Medicinal Chemistry Letters 20:2974-2977.

Tandon, M., Shukla, Y. N., Tripathi, A. K. and Singh, S. C. (1998). Insect antifeedant principles from Vernonia cinerea. Phytotherapy Research 12:195-199.

Toyang, N. J. and Verpoorte, R. (2013). A review of the medicinal potentials of plants of the genus Vernonia (Asteraceae). Journal of Ethnopharmacology 146:681-723.

Wang, Z., Zhao, Z., Cheng, X., Liu, S., Wei, Q. and Scott, I. M. (2016). Conifer flavonoid compounds inhibit detoxification enzymes and synergize insecticides. Pesticide Biochemistry and Physiology 127:1-7.

World Health Organization [WHO] (2005). Communicable disease tool kit. World Health Organization, WHO/CDS/2005.26, Sudan. pp. 68-72.

Wu, T. S., Hsu, H. C., Wu, P. L., Leu, Y. L., Chan, Y. Y., Chern, C. Y., Yeh, M. Y. and Tien, H. J. (1998). Naphthoquinone esters from the root of Rhinacanthus nasutus. Chemical and pharmaceutical bulletin (Tokyo) 46:413-418.

Yadav, R., Tyagi, V., Tikar, S. N., Sharma, A. K., Mendki, M. J., Jain, A. K. and Sukumaran, D. (2014). Differential larval toxicity and oviposition altering activity of some indigenous plant extracts against dengue and Chikungunya vector Aedes albopictus. Journal of Arthropod-Borne Diseases 8:174-185.