Production of Indole Acetic Acid (IAA) by Serratia marcescens subsp. marcescens and Rhodococcus aff. qingshengii

Main Article Content

Hasuty, A.
Choliq, A.
Hidayat, I.

Abstract

In vitro screening and characterization assay on indole acetic acid (IAA) production generally provides a reliable base for selection of useful plant growth promoting bacteria. Characterization at different parameters such as temperature, pH, and other physiological conditions is useful in finding optimum condition for the IAA production by bacteria. In this study, six endophytic bacterial isolates from Cocos nucifera L. and two strains of Rhodococcus aff. qingshengii were examined for their IAA production activity at different pH, temperature, and L-tryptophan concentration. Identification of effective IAA-producing bacteria was conducted by molecular phylogenetic analysis based on nucleotide sequences generated from 16S rRNA gene. The results showed that highest IAA concentration was produced by S. marcescens subsp. marcescens strain KB01, S. marcescens subsp. marcescens strain KB05, and R. aff. qingshengii strain 100A with 64.75 µg/mL, 56.60 µg/mL, and 18.06 µg/mL IAA, respectively. The IAA production by these bacteria was affected by L-tryptophan concentrations and was optimum at basic condition (pH 8-9).

Article Details

How to Cite
Hasuty, A., Choliq, A., & Hidayat, I. (2018). Production of Indole Acetic Acid (IAA) by Serratia marcescens subsp. marcescens and Rhodococcus aff. qingshengii. International Journal of Agricultural Technology, 14(3), 299–312. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/5902
Section
Original Study

References

Avendaño-Herrera, R., Balboa, S., Doce, A., Ilardi, P., Lovera, P., Toranzo, A. E. and Romalde, J. L. (2011). Pseudo-membranes on internal organs associated with Rhodococcus gingshengii infection in Atlantic salmon (Salmo salar). Veterinary Microbiology 147:200-204.

Costacurta, A. and Vanderleyden, J. (1995). Synthesis of phytohormones by plant associated bacteria. Critical Reviews in Microbiology 21:1-18.

Couillerot, O., Ramirez-Trujillo, A., Walker, V., von Felten, A., Jansa, J., Maurhofer, M., Défago, G., Prigent-Combaret, C., Comte, G., Caballero-Mellado, J. and Moënne-Loccoz, Y. (2012). Comparison of prominent Azospirillum strains in Azospirillum-Pseudomonas-Glomus consortia for promotion of maize growth. Applied Microbiology and Biotechnology 97:4639-4649.

Dastager, S. G., Deepa, C. K. and Pandey, A. (2011). Potential plant growth-promoting activity of Serratia nematodiphila NII-0928 on black pepper (Piper nigrum L.). World Journal of Microbiology and Biotechnology 27:259-265.

Devi, K. A., Pandey, P. and Sharma, G. D. (2017). Plant growth-promoting endophyte Serratia marcescens AL2-16 enhances the growth of Achyranthes aspera L., a medicinal plant. HAYATI Journal of Biosciences 23:173-180.

Duca, D., Lorv, J., Patten, C. L., Rose, D. and Glick, B. R. (2014). Indole-3-acetic acid in plant-microbe interactions. Antonie van Leeuwenhoek 106:85-125.

Ehmann, A. (1977). The Van Urk-Salkowski reagent a sensitive and specific chromogenic reagent for silica gel thin layer chromatographic detection and identification of indole derivates. Journal of Chromatography 132:267-276.

Goethals, K., El Jaziri, M. and Van Montagu, M. (1998) Plant micropropagation and germplasm storage. Patent Application No. PCT/EP98/0117 (WO 98/36635)

Gordon, S. A. and Weber, R. P. (1950). Colorimetric estimation of indole acetic acid. Plant Physiology 26:192-195.

Hastuty, A., Mangunwardoyo, W. and Sunarko, B. (2014). Characterization of α-Nitrile Hydratase and Amidase of Rhodococcus aff. qingshengii from Indonesia. HAYATI Journal of Biosciences 21:53-64.

Hussein, K. A., Kadhum, N. H. and Yasser, Y. K. (2016). The role of bacteria Bacillus subtilis in improving rooting response of Mung bean (Vigna radiata) cuttings. Journal of Contemporary Medical Sciences 2:88-92.

Idris, E. E., Iglesias, D. J., Talon, M. and Borriss, R. (2007). Tryptophan-dependent production of Indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Molecular Plant-Microbe Interactions 20:619-626.

Joseph, B., Patra, R. R. and Lawrence, R. (2007). Characterization of Plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). International Journal of Plant Production 2:141-152.

Jung, B. K., Khan, A. R., Hong, S. J., Park, G. S., Park, Y. J., Park, C. E., Jeon, H. J., Lee, S. E. and Shin, J. H. (2017). Genomic and phenotypic analyses of Serratia fonticola strain GS2: a rhizobacterium isolated from sesame rhizosphere that promotes plant growth and produces N-acyl homoserine lactone. Journal of Biotechnology 241:158-162.

Kalbe, C., Marten, P. and Berg, G. (1996). Strains of genus Serratia as beneficial rhizobacteria of oilseed rape with antifungal properties. Microbiological Research 151:433-439.

Kang, S. M., Khan, A. L., Waqas, M., You, Y. H., Hamayun, M., Joo, G. J., Shahzad, R., Choi, K. S. and Lee, I. J. (2015). Gibberellin-producing Serratia nematodiphila PEJ1011 ameliorates low temperature stress in Capsicum annuum L. European Journal of Soil Biology 68:85-93.

Koga, J., Adachi, T. and Hidaka, H. (1991). Molecular cloning of the gene for indole pyruvate decarboxylase from Enterobacter Caloacae. Molecular Genetics and Genomics 226:10-16.

Kosuge, T. and Sanger, M. (1987). Indole acetic acid, its synthesis and regulation: basis for tumorigen city in plant disease. Recent Advances in Phytochemistry 20:147-161.

Liu, X. G., Wu, Y., Chen, Y., Xu, F., Halliday, N., Gao, K., Chan, K.G. and Cámara, M. (2016). RpoS differentially affects the general stress response and biofilm formation in the endophytic Serratia plymuthica G3. Research in Microbiology 167:168-177.

Lwin, K. M., Myint, M. M., Tar, T. and Aung, W. Z. M. (2012). Isolation of plant hormone (Indole-3-acetic acid-IAA) producing Rhizobacteria and study on their effects on maize seedling. Engineering Journal 16:137-144.

Mohite, B. (2013). Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of Soil Science and Plant Nutrition 13:638-649.

Oberhansli, T., Defago, G. and Haas, D. (1991). Indole3-acetic acid (IAA) synthesis in the biocontrol strain CHAO of Pseudomonas fluoresces: role of tryptophan side chain oxidase. Journal of General Microbiology 137:2273-2279.

Sachdev, D. P., Chaudhari, H. G., Kasture, V. M., Dhavale, D. D. and Chopade, B. A. (2009). Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth. Indian Journal of Experimental Biology 47:993-1000.

Serepa, M. H., Tavengwa, N. T. and Gray, V. M. (2015). Purification and characterization of tryptophan and indole-3-acetic acid produced by Serratia marcescens strain MCB associated with Oscheius sp. MCB (Nematoda: Rhabditidae) obtained from South African soil. African Journal of Bacteriology Research 7:42-51.

Spaepen, S., Vanderleyden, J. and Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism plant signaling. FEMS Microbiol Rev 31:425-448.

Stes, E., Francis, I., Pertry, I., Dolzblasz, A., Depuydt, S. and Vereecke, D. (2011). The leafy gall syndrome induced by Rhodococcus fascians. FEMS Microbiol Lett 342:187-194.

Sudha, M., Gowri, R. S., Prabhavathi, P., Astapriya, P., Devi, S. Y. and Saranya, A. (2012). Production and optimization of indole acetic acid by indigenous microflora using agrowaste as substrate. Pakistan Journal of Biological Sciences 15:39-43.

Tsavkelova, E. A., Klimova, S. Y., Cherdyntseva, T. A. and Netrusov, A. I. (2006). Microbial producers of plant growth stimulators and their practical use: a review. Applied Biochemistry and Microbiology 42:117-126.

Vandeputte, O., Oden, S., Mol, A., Vereecke, D., Goethals, K., El Jaziri, M. and Prinsen, E. (2005). Biosynthesis of auxin by the Gram-positive phytopathogen Rhodococcus fascians is controlled by compounds specific to infected plant tissues. Applied and Environmental Microbiology 71:1169-1177.

Vereecke, D., Burssens, S., Simon Mateo, C., Inze, D., Van Montagu, M., Goethals, K. and Jaziri, M. (2000). The Rhodococcus fascians - plant interaction: morphological traits and biotechnological applications. Planta 210: 241-251.

Xu, J. L., He, J., Wang, Z. C., Wang, K., Li, W. J., Tang, S. K. and Li, S. P. (2007). Rhodococcus qingshengii sp. nov., a carbendazim-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology 57:2754-2757.

Zaheer, A., Mirza, B. S., Mclean, J. E., Yasmin, S., Shah, T. M., Malik, K. A. and Mirza, M. S. (2016). Association of plant growth-promoting Serratia spp. with the root nodules of chickpea. Research in Microbiology 167:510-520.