Effects of Arbuscular Mycorrhizal Fungal Inoculation on Growth and Yield of Flemingia vestita Benth. ex Baker

Main Article Content

Songachan, L. S.
Kayang, H.

Abstract

Pot experiment was conducted to investigate the effects of arbuscular mycorrhizal fungal inoculation on growth and tuber yield of Flemingia vestita under greenhouse condition.Three native AMF species (Acaulospora scrobiculata, Glomus aggregatum and Glomus luteum) and three commercial species (Acaulospora laevis, Glomus fasciculatum and Glomus macrocarpum) were used for inoculation. The results indicated that AMF inoculation increases plant growth and tuber yield compared to uninoculated ones. Plant growth in the form of plant height, leaf number and leaf area was greatest in A. scrobiculata inoculated plants, while root dry weight, tuber yield and P acquisition in roots and shoots was greatest in G. macrocarpum inoculated plants. Shoot dry weight was highest in G. aggregatum inoculated plants. From the present investigation, it was observed that F. vestita responds positively to AMF inoculation, the level of response however, depends on AMF species.

Article Details

How to Cite
Songachan, L. S., & Kayang, H. (2018). Effects of Arbuscular Mycorrhizal Fungal Inoculation on Growth and Yield of Flemingia vestita Benth. ex Baker. International Journal of Agricultural Technology, 14(3), 377–388. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/5958
Section
Original Study

References

Allen, S. E., Grimshaw, H. M., Parkinson, J. A. and Quaramby, C. (1974). Chemical analysis of ecological materials. Blackwell Scientific Publications, Oxford.

Bagyaraj, D. J. and Varma, A. (1995). Interaction between arbuscular mycorrhizal fungi and plants: their importance in sustainable agriculture and in arid and semiarid tropics. Advances in Microbial Ecology 14:119-142.

Bever, J. D., Schultz, P. A., Pringle, A. and Morton, J. B. (2001). Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. Bioscience 51:923-931.

Caravaca, F., Alguacil, M. M., Azcon, R., Diaz, G. and Roldan, A. (2004). Comparing the effectiveness of mycorrhizal inoculation with sugar beet, rock phosphate and Aspergillus niger to enhance field performance of the leguminous shrub Dorcynium pentaphyllum L. Applied Soil Ecology 25:169-180.

Clark, R. B. and Zeto, S. K. (2000). Mineral acquisition by arbuscular mycorrhizal plants. Journal of Plant Nutrition 23:867-902.

Das, B., Tandon, V. and Saha, N. (2004). Anthelmintic efficacy of Flemingia vestita (Fabaceae): alterations in glucose metabolism of the cestode, Raillietina echinobothrida. Parasitology International 53:345-350.

Diop, T. A., Krasova-Wade, T., Diallo, A., Diouf, M. and Gueye, M. (2003). Solanum cultivar responses to arbuscular mycorrhizal fungi: growth and mineral status. African Journal of Biotechnology 2:429-433.

Dixon, R. K., Garrett, H. E., Cox, G. S., Marx, D. H. and Sander, I. L. (1984). Inoculation of three Quercus species with eleven isolates of ectomycorrhizal fungi. Inoculation success and seedling growth relationships. Forest Science 30:364-372.

Duponnois, R., Plenchette, C. and Ba, A. M. (2001). Growth stimulation of seventeen fallow leguminous plants inoculated with Glomus aggregatum in Senegal. European Journal of Soil Biology 37:181-186.

Frey, B., and Schüepp, H. (1993) Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L. New Phytologist 124:221-230.

Gai, J. P., Feng, G., Christie, P. and Li, X. L. (2006). Screening for arbuscular mycorrhizal fungi for symbiotic efficiency with sweet potato. Journal of Plant Nutrition 29:1085-1094.

Gaur, A. and Adholeya, A. (2002). Arbuscular-mycorrhizal inoculation of five tropical fodder crops and inoculum production in marginal soil amended with organic matter. Biology and Fertility of Soils 35:214-218.

Gazey, C., Abbott, L. K. and Robson, A. D. (2004). Indigenous and introduced arbuscular mycorrhizal fungi contribute to plant growth in two agricultural soils from south-western Australia. Mycorrhiza 14:355-362.

Gerdemann, J. W. and Nicolson, T. H. (1963). Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society 46:235-244.

Gianinazzi-Pearson, V., Gianinazzi, S. and Trouvelot, A. (1985). Evaluation of the infectivity and effectiveness of indigenous vesicular arbuscular fungal populations in some agricultural soils in Burgundy. Canadian Journal of Botany 63:1521-1524.

Joner, E. J., Aarle, I. M. and Vosatka, M. (2000). Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae: a review. Plant Soil 226:199-210.

Khalil, S., Loynachan, T. E. and Tabatabai, M. A. (1994). Mycorrhizal dependency and nutrient uptake by improved and unimproved corn and soybean cultivars. Agronomy Journal 86:946-958

Klironomos, J. N. (2003). Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292-2301.

Koch, A. M., Crol, D. and Sanders, I. R. (2006). Genetic variability in a population of arbuscular mycorrhizal fungi causes variation in plant growth. Ecology Letters 9:103-110.

Larsen, J., Ravnskow, S. snd Sørensen, J. N. (2007). Capturing the benefits of arbuscular mycorrhizae in horticulture. In: Hamel C, Plenchette C. (Eds.), Mycorrhizae and crop productivity. Binghamton, New York: Haworth Press. pp. 123-150.

Munkvold, L., Kjøller, R., Vestberg, M., Rosendahl, S. and Jakobsen, I. (2004). High functional diversity within species of arbuscular mycorrhizal fungi. New Phytologist 164:357-364.

Ndiaye, M., Cavalli, E., Manga, A. G. B. and Diop, T. A. (2011). Improved Acacia Senegal growth after inoculation with arbuscular mycorrhizal fungi under water deficiency conditions. International Journal of Agriculture and Biology 13:271-274.

Niemira, B. B., Safir, G. R. and Bird, G. W. (1995). Production of prenuclear microtubers of potato with peat-based arbuscular mycorrhizal fungal inoculum. Agronomy Journal 87:942-946.

Qu, L. Y., Shinano, T., Quoreshi, A. M., Tamai, Y., Osaki, M. and Koike, T. (2004). Allocation of C14 carbon in two species of larch seedlings infected with ectomycorrhizal fungi. Tree Physiology 24:69-76.

Redente, E. F. and Reeves, F. B. (1981). Interactions between vesicular arbuscular mycorrhiza and Rhizobium and their effect on sweet vetch growth. Soil Science 132:410-415.

Rowe, H. I., Brown, C. S. and Classen, V. P. (2007). Comparisons of mycorrhizal responsiveness with field soil and commercial inoculum for six native montane species and Bromus tectorum. Restoration Ecology 15:44-52.

Shenpagam, N. H. and Selvaraj, T. (2010). Variability in growth and nutrition of Solanum viarum Dunal. as influenced by indigenous arbuscular mycorrhizal fungi. Journal of Agricultural Technology 6:461-468.

Sieverding, E. (1991). Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Deutshe GTZ, Eschborn and Hertmut Bremer-Verlag, Friedland. pp. 371.

Singh, S., Pandey, A., Chaurasia, B. and Palni, L. M. S. (2008). Diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of tea growing in natural and cultivated ecosites. Biology and Fertility of Soils 44:491-500.

Smith, S. E., Dickson, S. and Smith, F. A. (2001). Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated? Australian Journal of Plant Physiology 28:683-694.

Songachan, L. S. and Kayang, H. (2011). Diversity and species composition of arbuscular mycorrhizal fungi in Flemingia vestita under shifting and continuous cropping system. NeBio 2:1-8.

Sørensen, J. N., Larsen, J. and Jakobsen, I. (2005). Mycorrhiza formation and nutrient concentration in leeks (Allium porrum) in relation to previous crop and cover crop management on high P soil. Plant Soil 273:101-114.

Sørensen, J. N., Larsen, J. and Jakobsen, I. (2008). Pre-inoculation with arbuscular mycorrhizal fungi increases early nutrient concentration and growth of field-grown leeks under high productivity conditions. Plant Soil 307:135-147.

Sýkorová, Z., Wiemken, A. and Redecker, D. (2007). Co-occurring Gentiana verna and Gentiana acaulis and their neighboring plants in two Swiss upper montane meadows harbor distinct arbuscular mycorrhizal fungal communities. Applied and Environmental Microbiology 73:5426-5434.

Tarafdar, J. C. and Marschner, H. (1994). Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with organic phosphorus. Soil Biology and Biochemistry 26:387-395.

Tchabi, A., Coyne, D., Hountondji, F., Lawouin, L., Wiemken, A. and Oehl, F. (2010). Efficacy of indigenous arbuscular mycorrhizal fungi for promoting white yam (Dioscorea rotundata) growth in West Africa. Applied Soil Ecology 45:92-100.

Yao, K. M. (1996). Influence de different esespèces de champignons endomycorrhizi enssur la croissanceet le rendement de cultivars d’oignon (Allium cepa L.) soumis a differentes conditions culturales. Mémoire de maîtrise no. 15508, Université de Laval, Quebec, Canada.

Yao, M, Tweddell, R. and Désilets, H. (2002). Effect of two vesicular-arbuscular mycorrhizal fungi on the growth of micropropagated potato plantlets and on the extent of disease caused by Rhizoctonia solani. Mycorrhiza 12:235-242.