Efficacies of Essential Oils from Illiciaceae and Zingiberaceae Plants as Oviposition Deterrent, Ovicidal, and Adulticidal Agents against Females Aedes albopictus (Skuse) and Anopheles minimus (Theobald)

Main Article Content

Cotchakaew, N.
Soonwera, M.

Abstract

At present, serious mosquito vectors throughout the world have developed resistance to chemical insecticides Therefore, safe natural products for controlling mosquitoes are absolutely necessary. This study investigated the efficacy of herbal essential oil (EO) from Illiciaceae and Zingiberaceae plants, Alpinia galanga (A. galanga), Amomum krervanh                          (A. krervanh), Curcuma zedoaria (C. zedoaria), Illicium verum (I. verum), Zingiber cassumunar (Z. cassumunar) and Zingiber mekongense (Z. mekongense) against the females of Aedes albopictus (Ae. albopictus) and Anopheles minimus (An. minimus). All EOs at the high concentration (10%) were highly effective in oviposition deterrent, ovicidal, and adulticidal activities. Ten percent of C. zedoaria EO showed 100% effective repellency with an oviposition activity index (OAI) of -1.0 against the females of the two mosquito species, and 10% I.verum EO showed a high inhibition rate of 100% against the eggs of the two mosquitoes. Ten percent of A. galanga EO showed a high adulticidal activity against the females of Ae. albopictus and An. minimus with KT50 of 0.7 and 1 min at 1h, respectively, and 100% mortality at 24h as well as an LC50 of 7.5 and 2.9%, respectively. When compared with temephos and cypermethrin, the EOs from C. zedoaria, I.verum and A. galanga were more effective in oviposition deterrent and ovicidal activities than temephos and were equivalent in adulticidal activity to cypermethrin. To conclude, our data show that EOs from C. zedoaria, I.verum and A. galanga can be used as an oviposition deterrent, ovicidal and adulticidal agents against Aedes albopictus and Anopheles minimus.

Article Details

How to Cite
Cotchakaew, N., & Soonwera, M. (2018). Efficacies of Essential Oils from Illiciaceae and Zingiberaceae Plants as Oviposition Deterrent, Ovicidal, and Adulticidal Agents against Females Aedes albopictus (Skuse) and Anopheles minimus (Theobald). International Journal of Agricultural Technology, 14(5), 631–652. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/6048
Section
Original Study

References

Aguirre, O., Oscar, A., Pietrobon, A. J., Bona, A. C. D., Navarro, S. and Mário, A. (2016). Contrasting patterns of insecticide resistance and knockdown resistance (kdr) in Aedes aegypti populations from Jacarezinho (Brazil) after a Dengue Outbreak. Revista Brasileira de Entomologia 60:94-100.

Akiner, M. M., Demirci, B., Babuadze, G., Robert, V. and Schaffner, F. (2016). Spread of the invasive mosquitoes Aedes aegypti and Aedes albopictus in the Black Sea region increases risk of chikungunya, dengue, and Zika outbreaks in Europe. PLOS Neglected Tropical Diseases 10:1-5.

Baskar, K., Sudha, V., Nattudurai, G., Ignacimuthu, S., Duraipandiyan, V. and Jayakumar, M. (2017). Larvicidal and repellent activity of the essential oil from Atalantia monophylla on three mosquito vectors of public health importance, with limited impact on non- target zebra fish. Physiological and Molecular Plant Pathology 101:197-201.

Benelli, G. and Pavela, R. (2018a). Beyond mosquitoes-essential oil toxicity and repellency against bloodsucking insects. Industrial Crops and Products 117:382- 392.

Benelli, G., Rajeswary, M. and Govindarajan, M. (2018b). Towards green oviposition deterrents? effectiveness of Syzygium lanceolatum (Myrtaceae) essential oil against six mosquito vectors and impact on four aquatic biological control agents. Environmental Science and Pollution Research 25:10218-10227.

Benelli, G., Bedini, S., Cosci, F., Toniolo, C., Conti, B. and Nicoletti, M. (2015). Larvicidal and ovideterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): a bioactivity survey across production sites. Parasitol Res 114:227-236.

Bhan, S., Mohan, L. and Srivastava, C. N. (2015). Efficacy of Cuscuta reflexa extract and its synergistic activity with temephos against mosquito larvae. International Journal of Mosquito Research 2:34-41.

Chareonkla, A., Pohmakotr, M., Reutrakul, V., Yoosook, C., Kasisit, J., Napaswad, C. and Tuchinda, P. A new diarylheptanoid from the rhizomes of Zingiber mekongense. Fitoterapia 82:534-538.

Chen, I. N., Chang, C. C., Ng, C. C., Wang, C. Y., Shyu, Y. T. and Chang, T. L. (2008). Antioxidant and antimicrobial activity of Zingiberaceae plants in Taiwan. Plant Foods for Human Nutrition 63:15-20.

Dallegrave, A., Pizzolato, T. M., Barreto, F., Bica, V. C., Eljarrat, E. and Barceló, D. (2018). Residue of insecticides in foodstuff and dietary exposure assessment of Brazilian citizens. Food and Chemical Toxicology 21:329-335.

Diao, W. R., Zhang, L. L., Feng, S. S. and Xu, J. G. Chemical composition, antibacterial activity, and mechanism of action of the essential oil from Amomum kravanh. Journal of Food Protection 77:1740-1746.

El-Wakeil, N. (2013). Botanical pesticides and their mode of action. Gesunde Pflanzen. 65:125-149.

Elango, G., Bagavan, A., Kamaraj, C., Zahir, A. A. and Rahuman, A. A. (2009). Oviposition- deterrent, ovicidal, and repellent activities of indigenous plant extracts against Anopheles subpictus Grassi (Diptera: Culicidae). Parasitology Research 105:1567- 1576.

Faculty of Pharmacy, Mahidol University.Medicinal Plants in Siri Ruckhachati Garden, 1st edn. Amarin Printing Group, Bangkok. 1992; p257.

George, D. R., Finn, R. D., Graham, K. M. and Sparagano, O. A. (2014). Present and future potential of plant- derived products to control arthropods of veterinary and medical significance. Parasites & Vectors 17: 1-12.

Alyahya, S. A., Maggi, F. and Benelli, G. (2018). High efficacy of (Z)-γ-bisabolene from the essential oil of Galinsoga parviflora (Asteraceae) as larvicide and oviposition deterrent against six mosquito vectors. Environmental Science and Pollution Research 25:10555-10566.

Hamdi, O. A. A, Ye, L. J., Kamarudin, M. N. A., Hazni, H., Paydar, M., Looi, C. Y., Shilpi, J. A., Kadir, H. A. and Awang, K. (2015). Neuroprotective and Antioxidant Constituents from Curcuma zedoaria rhizomes. Records of Natural Products. 9:349-355.

Hussain, L. A. (2010). Role of oxidative stress in organophosphate insecticide toxicity - Short

review. Pesticide Biochemistry and Physiology 98:145-150.

Kamazeri, T. S., Samah, O. A., Taher, M., Susanti, D. and Qaralleh, H. (2012). Antimicrobial activity and essential oils of Curcuma aeruginosa, Curcuma mangga, and Zingiber cassumunar from Malaysia. Asian Pacific Journal of Tropical Medicine. 5:202-209.

Killeen, G. F. and Ranson, H. (2018). Insecticide-resistant malaria vectors must be tackled. The Lancet 391:1551-1552.

Kimbaris, A. C., Koliopoulos, G., Michaelakis, A. and Konstantopoulou, M. A. (2012). Bioactivity of Dianthus caryophyllus, Lepidium sativum, Pimpinella anisum, and Illicium verum essential oils and their major components against the West Nile vector Culex pipiens. Parasitology Research. 111:2403-2410.

Kounnavong, S., Gopinath, D., Hongvanthong, B., Khamkong, C. and Sichanthongthip, O. (2017). Malaria elimination in Lao PDR: the challenges associated with population mobility. Infectious Diseases of Poverty 6:1-9.

Kweka, E. J., Lima, T. C., Marciale, C. M. and de Sousa, D. P. (2016). Larvicidal efficacy of monoterpenes against the larvae of Anopheles gambiae. Asian Pacific Journal of Tropical Medicine 6:290-294.

Leta, S., Beyene, T. J., De Clercq, E. M., Amenu, K., Kraemer, M. U. G. and Revie, C. W. (2018). Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. International Journal of Infectious Diseases. 67:25-35.

Melo-Santos, M. A, Varjal-Melo, J. J., Araújo, A. P., Gomes, T. C., Paiva, M. H., Regis, L. N., Furtado, A. F., Magalhaes, T., Macoris, M. L., Andrighetti, M. T. and Ayres, C. F. (2010). Resistance to the organophosphate temephos: mechanisms, evolution and reversion in an Aedes aegypti laboratory strain from Brazil. Acta Tropica 113:180-189.

Müller, G. C., Junnila, A., Butler, J., Kravchenko, V. D., Revay, E. E., Weiss, R. W. and Schlein, Y. (2009). Efficacy of the botanical repellents geraniol, linalool, and citronella against mosquitoes. Journal of Vector Ecology 34:2-8.

Muturi, E. J., Ramirez, J. L., Zilkowski, B., Flor-Weiler, L. B. and Rooney, A. P. (2018). Ovicidal and larvicidal effects of garlic and asafoetida essential oils against west Nile virus vectors. Journal of Insect Science 18:1-6.

Naqqash, M. N., Gökçe, A., Bakhsh, A. and Salim, M. (2016). Insecticide resistance and its molecular basis in urban insect pests. Parasitology Research 115:1363-1373.

Omondi, S., Mukabana, W. R., Ochomo, E., Muchoki, M., Kemei, B. and Mbogo, C. (2017). Quantifying the intensity of permethrin insecticide resistance in Anopheles mosquitoes in western Kenya. Parasites & Vectors 10:1-8.

Paeporn, P., Komalamisra, N., Deesin, V., Rongsriyam, Y., Eshita, Y. and Thongrungkiat, S. (2003). Temephos resistance in two forms of Aedes aegypti and its significance for the resistance mechanism. Southeast Asian Journal of Tropical Medicine and Public Health 34:786-792.

Pavela, R. (2015). Essential oils for the development of eco-friendly mosquito larvicides: A review. Industrial Crops and Products 75:174-187.

Peng, Y., Yu, K., Liu, M. and Jiang, L. (2014). Bioactivity and chemical compositions of essential oil extracted from Illicium verum against mosquitoes. Advanced Materials Research 864:164-167.

Phukerd, U. and Soonwera, M. (2013a). Insecticidal effect of essential oils from Boesenbergia rotunda (L.) Mansf. and Curcuma zedoaria Rosc against dengue vector mosquito, Aedes aegypti L. International Journal of Agricultural Technology 9:1573-1583.

Phukerd, U. and Soonwera, M. (2013b). Larvicidal and pupicidal activities of essential oils from Zingiberaceae plants against Aedes aegypti (Linn.) and Culex quinquefasciatus Say mosquitoes. Southeast Asian Journal of Tropical Medicine and Public Health 44:761- 771.

Phukerd, U. and Soonwera, M. (2015). Repellency of essential oils extracted from Thai native plants against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say). Parasitology Research 113:3333-3340.

Pitasawat, B., Champakaew, D., Choochote, W., Jitpakdi, A., Chaithong, U., Kanjanapothi, D.,

Rattanachanpichai, E., Tippawangkosol, P., Riyong, D. and Tuetun, B. (2007). Aromatic plant-derived essential oil: an alternative larvicide for mosquito control. Fitoterapia 78:205-210.

Pompon, J., Manuel, M., Ng, G. K., Wong, B., Shan, C., Manokaran, G., Soto-Acosta, R., Bradrick, S.S., Ooi, E. E. and Missé, D. (2017). Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus transmission. PLOS Pathogens 13:1-27.

Rao, K., Ch, B., Narasu, L. M. and Giri, A. (2010). Antibacterial activity of Alpinia galanga (L) Willd crude extracts. Applied Biochemistry and Biotechnology 162:871-884.

Regnault–Roger, C., Vincent, C. and Arnason, J. T. (2012). Essential oils in insect control: low- risk products in a high-stakes world. Annual Review of Entomology 57:405-424.

Sallam, M. A., Ahmad, M., Ahmad, I., Gul, S. T., Idrees, M., Bashir, M. I. and Zubair, M. (2015). Toxic effects of cypermethrin on the reproductive functions of female rabbits and their amelioration with vitamin E and selenium. Pakistan Veterinary 35:193-196.

Shaalan, E. A. and Canyon, D. V. (2018). Mosquito oviposition deterrents. Environmental Science and Pollution Research 25:10207-10217.

Sinthusiri, J. and Soonwera, M. (2013). Efficacy of herbal essential oils as insecticides against the housefly, Musca domestica L. Southeast Asian Journal of Tropical Medicine and Public Health 44:188-196.

Sinthusiri, J. and Soonwera, M. (2014). Oviposition deterrent and ovicidal activities of seven herbal essential oils against female adults of housefly, Musca domestica L. Parasitology Research 113:3015-3022.

Sonkong, K., Chaiklieng, S., Neave, P. and Suggaravetsiri, P. (2015). Factors affecting delay in seeking treatment among malaria patients along Thailand-Myanmar border in Tak Province, Thailand. Malaria Journal 14:1-8.

Soonwera, M. (2015). Efficacy of essential oil from Cananga odorata (Lamk.) Hook.f. & Thomson (Annonaceae) against three mosquito species Aedes aegypti (L.), Anopheles dirus (Peyton and Harrison), and Culex quinquefasciatus (Say). Parasitology Research 114:4531-4543.

Soonwera, M. and Phasomkusolsil, S. (2017). Adulticidal, larvicidal, pupicidal and oviposition deterrent activities of essential oil from Zanthoxylum limonella Alston (Rutaceae) against Aedes aegypti (L.) and Culex quinquefasciatus (Say). Asian Pacific Journal of Tropical Biomedicine 7:967-978.

Sriwichai, P., Samung, Y., Sumruayphol, S., Kiattibutr, K., Kumpitak, C., Payakkapol, A., Kaewkungwal, J., Yan, G., Cui, L. and Sattabongkot, J. (2016). Natural human Plasmodium infections in major Anopheles mosquitoes in western Thailand. Parasites & Vectors 9:1-9.

Suthisut, D., Fields, P. G. and Chandrapatya, A. (2011a). Contact toxicity, feeding reduction, and repellency of essential oils from three plants from the ginger family (Zingiberaceae) and their major components against Sitophilus zeamais and Tribolium castaneum. Journal of Economic Entomology 104:1445-1454.

Suthisut, D., Fields, P. G. and Chandrapatya, A. (2011b). Fumigant toxicity of essential oils from three Thai plants (Zingiberaceae) and their major compounds against Sitophilus zeamais, Tribolium castaneum and two parasitoids. Journal of Stored Products Research 47:222-230.

The United Nations Children’s Fund (UNICEF) (2017). Malaria a major cause of child death and poverty in Affica. 10 December. https://www.unicef.org/spanish /publications/files/malaria_eng.pdf.

Tholkappiyavathi, K., Selvan, K. M., Neyanila, S. K., Yoganandam, G. P. and Gopal, V. (2013). A concise review on Curcuma zedoaria. International of journal phytotherapy 3:1-4.

Ullah, S., Zuberi, A., Alagawany, M., Farag, M. R., Dadar, M., Karthik, K., Tiwari, R., Dhama, K. and Iqbal, H. M. N. (2018). Cypermethrin induced toxicities in fish and adverse health outcomes: Its prevention and control measure adaptation. Journal of Environmental Management 206:863-871.

Voravuthikunchai, S. P. (2007). Family Zingiberaceae compounds as functional antimicrobials, antioxidants, and antiradicals. Food 1:227-240.

Wang, G. W., Hu, W. T., Huang, B. K. and Qin, L. P. (2011). Illicium verum: a review on its botany, traditional use, chemistry and pharmacology. Journal of Ethnopharmacology 136:10-20.

World Health Organization.WHO (2017). specifications and evaluations for public health pesticides. 10 December 2017. http://www.who.int/whopes quality/en/Alphacyperme thrin_WHO_specs_eval_Jan_2013.pdf.

Wu, Z. M., Chu, H. L., Wang, G., Zhu, X. J., Guo, X. X. and Zhang, Y. M. (2016). Multiple- Insecticide Resistance and Classic Gene Mutations to Japanese Encephalitis Vector Culex tritaeniorhynchus from China. Journal of the American Mosquito Control Association 32:144-151.

Zhang, B. (2012). Evaluation of plant extracts from" Illicium verum" for the control of museum insect pest "Demestes maculatus". International Journal of Animal and Veterinary 4:119-124.

Zhang, Z., Xie, Y., Wang, Y., Lin, Z., Wang, L. and Li, G. (2017). Toxicities of monoterpenes against housefly, Musca domestica L. (Diptera: Muscidae). Environmental Science and Pollution Research 24:24708-24713.