Characterization of antagonistic–potential of Bacillus velezensis SK71 against bacterial brown spot on a terrestrial orchid (Habenaria lindleyana)

Main Article Content

Akarapisan, A.
Khamtham, J.
Kositratana, W.

Abstract

Bacillus velezensis SK71 was isolated from the rhizosphere of a terrestrial orchid. The result showed that SK71 has strongly inhibited Acidovorax avenae subsp. cattleyae. Isolate SK71 produced a 22 mm inhibition zone against A. avenae subsp. cattleyae in paper disc culture plate confrontation on nutrient yeast dextrose agar plates. The antagonistic bacterial isolate was identified by using 16S rRNA sequence analysis. PCR detection of the sfp and ituA genes coding for iturin A and surfactin, respectively, indicated a potential for the production of these antibiotics. The production of hydrolytic enzyme and the plant growth–promotional attribute of SK71 confirmed this multifaceted potential. The mixture formulation of SK71 with diatomite powder as a carrier and carboxymethyl cellulose, K2HPO4 and glucose showed good effect in suppressing the pathogen in vitro. Bulb treatment and spraying with these formulation is an effective delivery system that can provide a conducive environment for B. velezensis SK71 to suppress brown spot disease on the terrestrial orchid. Greenhouse studies revealed that SK71 had a 53.34% efficacy in controlling brown spot disease. In this study, we consider that formulation of SK71 is a promising natural biocontrol product, with scale–up possibilities for health and growth promotion of terrestrial orchids.

Article Details

How to Cite
Akarapisan, A., Khamtham, J., & Kositratana, W. (2020). Characterization of antagonistic–potential of Bacillus velezensis SK71 against bacterial brown spot on a terrestrial orchid (Habenaria lindleyana). International Journal of Agricultural Technology, 16(1), 1–18. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/6159
Section
Original Study

References

Adesemoye, A. O. and Egamberdieva, D. (2013). Beneficial effects of plant growth–promoting rhizobacteria on improved crop production: prospects for developing economies. Bacteria agrobiology: crop productivity. Springer, Berlin, pp.45-63.

Al-Ali, A., Deravel, J., Krier, F., Bechet, M., Ongena, M. and Jacques, P. (2017). Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42. Environmental Science and Pollution Research, 133:1-11.

Ash, C., Farrow, J. A. E., Wallbanks, S. and Collins, M. D. (1991). Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small subunit ribosomal RNA sequences. Letters in Applied Microbiology, 13:202-206.

Bergey, H. and Holt, J. G. (1994). Group 18 Endospore–Forming Gram Positive Rods and Cocci. Bergey's Manual of Determinative Bacteriology. Lippincott Williams & Wilkins, pp.787.

Borshchevskaya, L. N., Kalinina, A. N. and Sineokii, S. P. (2013). Design of a PCR test based on the gyrA gene sequence for the identification of closely related species of the Bacillus subtilis group. Applied Biochemistry and Microbiology, 49:646-655.

Chen, X. H., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I., Morgenstern, B., Voss, B., Hess, W. R., Reva, O., Junge, H., Voigt, B., Jungblut, P. R., Vater, J., Sussmuth, R., Liesegang, H., Strittmatter, A., Gottschalk, G. and Borriss, R. (2007). Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42. Nature Biotechnology, 5:7-1014.

Cheng, H. R. and Jiang, N. (2006). Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnology Letters, 28:55-59.

Chung, S., Kong, H., Buyer, J. S., Lakshman, D. K., Lydon, J., Kim, S. D. and Roberts, D. P. (2008). Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Applied Microbiology and Biotechnology, 80:115-123.

Chung, S., Lim, J. H. and Kim, S. D. (2010). Powder formulation using heat resistant endospores of two multi–functional plant growth promoting rhizobacteria Bacillus strains having phytophtora blight suppression and growth promoting functions. Journal of the Korean Society for Applied Biological Chemistry, 53:485-492.

Cribb, P. J., Kell, S. P., Dixon, K. W. and Barrett, R. L. (2003). Orchid conservation: a global perspective. In: Dixon K. W., Kell, S. P., Barrett, R. L., Cribb, P. J., eds. Orchid conservation. Kota Kinabalu, Sabah, Natural History Publications, pp.1-24.

Errington, J. (2003). Regulation of endospore formation in Bacillus subtilis. Nature Reviews Microbiology, 1:117-126.

Esposito–Polesi, N. P., Abreu–Tarazi, M. F., Almeida, C. V., Tsai, S. M. and Almeida, M. (2017). Investigation of endophytic bacterial community in supposedly axenic cultures of pineapple and orchids with evidence on abundant intracellular bacteria. Current Microbiology, 74:3-113.

Falardeau, J., Wise, C., Novitsky, L. and Avis, T. J. (2013). Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. Journal of Chemical Ecology, 39:869-878.

Fan, B., Blom, J., Klenk, H. P. and Borriss, R. (2017a). Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an Boperational group B. amyloliquefaciens within the B. subtilis species complex. Frontiers in Microbiology, 8:22.

Fan, H., Zhang, Z., Li, Y., Zhang, X., Duan, Y. and Wang, Q. (2017b). Biocontrol of bacterial fruit blotch by Bacillus subtilis 9407 via surfactin–mediated antibacterial activity and colonization. Frontiers in Microbiology, 8:1973.

Gerhardt, P., Murray, R. G. E., Wood Willis, A. and Krieg Noel, R. (1994). Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC. ISBN:1555810489.

Glick, B. R, Patten, C. L, Holguin, G. and Penrose, G. M. (1999). Biochemical and Genetic Mechanisms Used by Plant Growth Promoting Bacteria. Imperial College Press, London.

Goto, K., Omura, T., Hara, Y. and Sadaie, Y. (2000). Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus. Journal of General and Applied Microbiology, 46:1-8.

Han, Y. Z., Zhang, B., Shen, Q., You, C. Z., Yu, Y. Q., Li, P. L. and Shang, Q. M. (2015). Purification and identification of two antifungal cyclic peptides produced by Bacillus amyloliquefaciens L–H15. Applied Biochemistry and Biotechnology, 176:2202-2212.

Jasim, B., Sreelakshmi, K. S., Mathew, J. and Radhakrishnan, E. K. (2016). Surfactin, Iturin, and Fengycin Biosynthesis by Endophytic Bacillus sp. from Bacopa monnieri. Microbial Ecology, 72:106-119.

Jiang, C. H., Wu, F., Yu, Z.Y., Xie, P., Ke, H. J., Li, H. W., Yu, Y. Y. and Guo, J. H. (2015). Study on screening and antagonistic mechanisms of Bacillus amyloliquefaciens 54 against bacterial fruit blotch (BFB) caused by Acidovorax avenae subsp. citrulli. Microbiological Research, 170:95-104.

Johnson, L. F. and Curl, E. A. (1972). Methods for research on the ecology of soil–borne plant pathogens. Minneapolis: Burgess Publishing Company.

Keith, L. M., Sewake, K. T. and Zee, F. T. (2005). Isolation and characterization of Burkholderia gladioli from orchids in Hawaii. Plant Disease Journal, 89:1273-1278.

Klijn, N., Weerkamp, H. and Vos, W. (1991). Identification of mesophilic lactic acid bacteria by using polymerase chain reaction–amplified variable region of 16S rRNA and specific DNA probes. Applied and Environmental Microbiology, 57:3390-3393.

Kongsawad, P., Nusawad, S., Sachit, S. and Pumherun, J. (2013). Potential of orchid ‘Pecteilis sp.’ for commercial. Kaen Kaset, 41:1.

Kumar, S., Stecher, G. and Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33:1870-1874.

Kurzwell, H. (2009). The genus Habenaria (Orchidaceae) in Thailand. THAI FOR. BULL. (BOT.), SPECIAL ISSUE:7-105.

Lee, S. E., Yi, H. S., Park, S. H. and Ghim, S. Y. (2005). Characterization of a rhizobacterium promoting early growth in maize. Korean Journal of Microbiology and Biotechnology, 33:70-73.

Libbert, E. and Risch, H. (1969). Interactions between plants and epiphytic bacteria regarding their auxin metabolism. physiol plantarum journal, 22:51-58.

Liu, B., Qiao, H. P., Huang, L. L., Buchenauer, H., Han, Q. M., Kang, Z. S. and Gong, Y. F. (2009). Biological control of take–all in wheat by endophytic Bacillus subtilis E1R–j and potential mode of action. Biological Control, 49:277-285.

Martínez–Álvarez, J. C., Castro–Martínez, C., Sánchez–Peña, P., Gutiérrez–Dorado, R. and Maldonado–Mendoza, I. E. (2016). Development of a powder formulation based on Bacillus cereus sensu lato strain B25 spores for biological control of Fusarium verticillioides in maize plants. World Journal of Microbiology and Biotechnology, 32:75.

Meerak, J., Yukphan, P., Miyashita, M., Sato, H., Nakagawa, Y. and Tahara, Y. (2008). Phylogeny of gamma–polyglutamic acid–producing Bacillus strains isolated from a fermented locust bean product manufactured in West Africa. Journal of General and Applied Microbiology, 54:159-166.

Miller, J. W. (1990). Bacterial brown spot of orchid caused by Pseudomonas cattleyae. Plant Pathology Circular No. 330.

Montesinos, E. (2007). Antimicrobial peptides and plant disease control. FEMS Microbiology Letters, 270:1-11.

Nakamura, L. K., Roberts, M. S. and Cohan, F. M. (1999). Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. subtilis subsp. nov. and Bacillus subtilis subsp. spizizenii subsp. nov. International Journal of Systematic and Evolutionary Microbiology, 49:1211-1215.

Nakkeeran, S., Fernando, W. D. and Siddiqui, Z. A. (2006). Role of cytokinins in plant growth promotion by rhizosphere bacteria. In: PGPR: biocontrol and biofertilization. Springer, pp.257-296.

Ongena, M., Jacques, P., Touré, Y., Destain, J., Jabrane, A. and Thonart, P. (2005). Involvement of fengycin–type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Applied Microbiology and Biotechnology, 69:29-38.

Palazzini, J. M., Dunlap, C. A., Bowman, M. J. and Chulze, S. N. (2016). Bacillus velezensis RC218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: genome sequencing and secondary metabolite cluster profiles. Microbiological Research, 192:30-36.

Palmisano, M. M., Nakamura, L. K., Duncan, K. E., Istock, C. A. and Cohan, F. M. (2001). Bacillus sonorensis sp. nov., a close relative of Bacillus licheniformis, isolated from soil in the Sonoran Desert, Arizona. International Journal of Systematic and Evolutionary Microbiology, 51:1671-1679.

Pridgeon, A. M., Cribb, P. J., Chase, M. W. and Rasmussen, F. N. (2001). Genera Orchidacearum, vol. 2 (Orchidoideae, part 1). Oxford University Press, New York.

Rahman, M. M. E., Hossain, D. M., Suzuki, K., Shiiya, A., Suzuki, K. and Dey, T. K. (2016). Suppressive effects of Bacillus spp. on mycelia, apothecia and sclerotia formation of Sclerotinia sclerotiorum and potential as biological control of white mold on mustard. Australasian Plant Pathology, 45:103.

Rashid, S., Charles, T. C. and Glick, B. R. (2012). Isolation and characterization of new plant growth–promoting bacterial endophytes. Applied Soil Ecology, 61:217-224.

Rey, M. W., Ramaiya, P., Nelson, B. A., Brody–Karpin, S. D., Zaretsky, E. J., Tang, M., Lopez de Leon, A., Xiang, H., Gusti, V., Clausen, I. G., Olsen, P. B., Rasmussen, M. D., Andersen, J. T., Jorgensen, P. L., Larsen, T. S., Sorokin, A., Bolotin, A., Lapidus, A., Galleron, N., Ehrlich, S. D. and Berka, R. M. (2004). Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biology, 5:77.

Schaad, N. W., Postnikova, E., Sechler, A., Claflin, L. E., Vidaver, A. K., Jones, J. B., Agarkova, I., Ignatov, A., Dickstein, E. and Ramundo, B. A. (2008). Reclassifica–tion of subspecies of Acidovorax avenae as A. avenae (Manns, 1905) emend., A. cattleyae (Pavarino, 1911) comb. nov., A. citrulli (Schaad et al., 1978) comb. nov., andproposal of A. oryzae sp. nov. Systematic and Applied Microbiology, 31:434-446.

Shaikh, S. and Sayyed, R. (2015). Role of plant growth–promoting rhizobacteria and their formulation in biocontrol of plant diseases. In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, India, pp.337-35.

Shrestha, B. K., Karki, H. S., Groth, D. E., Jungkhun, N. and Ham, J. H. (2016). Biological Control Activities of Rice–Associated Bacillus sp. Strains against Sheath Blight and Bacterial Panicle 493 Blight of Rice. PLoS ONE. 11:e0146764.

Simone, G. W. and Burnett, H. C. (2002). Diseases caused by bacteria and fungi. In: Orchid. Pests and Diseases. American Orchid Society, Delray Beach, FL, pp.50-73.

Tamura, K., Nei, M. and Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor–joining method. Proceedings of the National Academy of Sciences (USA), 101:11030-11035.

Ticknor, O. L., Anne–Brit, K., Karen, K. H., Paul K., Miriam, T. L., Melinda, T. and Paul, J. J. (2001). Fluorescent amplified fragment length polymorphism analysis of norwegian Bacillus cereus and Bacillus thuringiensis soil isolates. Applied and Environmental Microbiology, 67:4863-4873.

Wang, L. T., Lee, F. L., Tai, C. J. and Kasai, H. (2007). Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA–DNA hybridization in the Bacillus subtilis group. International Journal of Systematic and Evolutionary Microbiology, 57:1846-1850.

White, J. F., Torres, M. S., Sullivan, R. F., Jabbour, R. E., Chen, Q., Tadych, M., Irizarry, I., Bergen, M. S., Havkin–Frenkel, D. and Belanger, F. C. (2014). Occurrence of Bacillus amyloliquefaciens as a systemic endophyte of vanilla orchids. Microscopy Research and Tecnique, 77:864-885.