Morphological and molecular based identification of Trichoderma CB-Pin-01 biological control agent of plant pathogenic fungi in Thailand
Main Article Content
Abstract
Trichoderma CB-Pin-01 is an efficient biocontrol agent of fungal plant diseases, commercially produced and legally registered in 1996 as a biological control agent against several plant diseases in Thailand. This isolate was primarily identified as T. harzianum based on morphological characteristics. To confirm the species identification of Trichoderma CB-Pin-01, conidial surface observation and DNA sequence analysis were conducted. Trichoderma CB-Pin-01 showed irregular pyramidal warts on conidia surface which is a typical characteristics of T. asperellum. Moreover, ITS 1 and 4 sequences of rDNA combined with tef1 gene sequence indicated the phylogenetic placement of Trichoderma CB-Pin-01 as T. asperellum. We concluded that the formerly T. harzianum CB-Pin-01 has to be re-classified as Trichoderma asperellum.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Chamswarng, C. and Intanoo, W. (2002). Production of Trichodermafresh culture by simple technique for controlling damping-off of yard long bean caused by Sclerotium rolfsii, pp. 114-122. Proc. 40th Kasetsart University Annual Conference, Bangkok, Thailand.
Chamswarng, C. and Tanangsnakool, W. (1996). UNIGREEN UN-1® (Trichoderma harzianum): The first registered biofungicide in Thailand, pp.291-295. Proc. International Symposium on Biopesticides. Pitsanulok, Thailand.
Chamswarng, C., Intanoo, W., Intana, W., Boonradkwang, C. and Charoenrak, P. (2010). Efficacy of extract from Trichoderma harzianum strain PM9 to control anthracnose of mango and chili fruits disease caused by Colletotrichum gloeosporioides, pp.136. ISSAAS International Symposium & Congress 2009, Pattaya, Thailand.
Charoenrak, C. and Chamswarng, C. (2015). Application of Trichoderma asperellum fresh culture bioproduct as potential biological control agent of fungal diseases to increase yield of rice (Oryza sativa L.). J. ISSAAS, 21:67-85.
Charoenrak, P., Chamswarng, C. and Intanoo, W. (2012). Seed soaking and foliar spraying of Trichoderma harzianum isolates increases chitinase levels in rice leaf, International Conference on Tropical and Subtropical Plant Diseases, Chiang Mai, Thailand Abstr, pp.54.
Chaverri, P., Branco-Rocha, F., Jaklitsch, W., Degenkolb, T. and Samuels, G. L. (2015). Systematics of the Trichoderma harzianum species complex including the identification of commercial biocontrol strains. Mycologia, 107:558-590.
Cordier, C., Edel-Hermann, V., Martin-Laurent, F., Blal, B., Steinberg, C. and Alabouvette, C. (2006). SCAR-based real time PCR to identify a biocontrol strain (T1) of Trichoderma atroviride and study its population dynamics in Soils. Journal of Microbiological Methods, 68:60-68.
Dodd, J. S., Hill, R. A. and Stewart, A. (2004). A duplex-PCR bioassay to detect a Trichoderma virens biocontrol isolate in non-sterile soil. Soil Biology and Biochemistry, 36:1955-1965.
Druzhinina, I. S., Kopchinskiy, A. G. and Kubicek, C. P. (2006). The first 100 Trichoderma species characterized by molecular data. Mycoscience, 47:55-64.
Druzhinina, I. S., Kopchinskiy, A. G., Komon, M., Bissett, J., Szakacs, G. and Kubicek, C. P. (2005). An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genetics and Biology, 42:813-828.
European Food Safety Authority (2013). Conclusion on the peer review of the pesticide risk assessment of the active substance Trichoderma asperellum strains Icc012, T25 and Tv1. EFSA Journal, 11:3036-3097.
Feng, X. M., Holmberg, A. I. J., Sundh, I., Ricard, T. and Melin, P. (2011). Specific SCAR markers and multiplex real-time PCR for quantification of two Trichoderma biocontrol strains in environmental samples. Biological Control, 56:903-913.
Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39:783-791.
Gesnara, W. (1994). Study on Trichoderma harzianum as a potential biocontrol agent of tomato and barley diseases caused by Sclerotium rolfsii: Emphasis on fermentation biomass. (Ph.D. Thesis). Kasetsart Univ. Bangkok, Thailand.
Harmann, G. E., Howell, C. R., Viterbo, A., Chet, I. and Lorito, M. (2004). Trichoderma species –opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 1:43-56.
Hermosa, M. R., Grondon, I., Diaz-Minguez, J. M., Iturriaga, E. A. and Monte, E. (2001). Development of a strain-specific SCAR marker for the detection of Trichoderma atroviride 11, a biological control agent against soilborne fungal plant pathogens. Current Genetics, 38:343-350.
Kullnig, C. M., Krupica, T., Woo, S. L., Mach, R. L., Rey, M., Lorito, M. and Kubicek, C. P. (2001). Confusion abounds over identities of Trichoderma biocontrol isolates. Mycological Research, 105:769-772.
Lamool, P., Chamswarng, C., Intanoo, W. and Thongket, T. (2005). Application of Trichoderma harzianum for the control of lettuce root rot caused by Pythium aphanidermatum in hydroponic culture. Agricultural Sciences Journal, 36:1179-1182.
Lieckfeldt, E., Samuels, G. J., Nirenberg, H. I. and Petrini, O. (1999). A morphological and molecular perspective of Trichoderma viride: is it one or two species? Applied and Environmental Microbiology, 65:2418-2428.
Meyer, R. J. and Plaskowitz, J. S. (1989). Scanning electron microscopy of conidia and conidial matrix of Trichoderma. Mycologia, 81:312-317.
Mukherjee, P. K., Horwitz, B. A., Singh, U. S., Mukherjee, M. and Schmoll, M. (2013). Trichoderma biology and applications. CAB International, 9-42.
O'Donnell, K., Kistler, H. C., Cigelnik, E. and Ploetz, R. C. (1998). Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences, USA, 95:2044-2049.
Promwee, A., Issarakraisila, M., Intana, W., Chamswarng, C. and Yenjit, P. (2014). Phosphate solubilization and growth promotion of rubber tree (Hevea brasiliensis Muell. Arg.) by Trichoderma strains. Journal of Agricultural Science, 6:8-20.
Rubio, M. B., Hermosa, M. R., Keck, E. and Monte, E. (2005). Specific PCR assays for the Detection and quantification of DNA, from the biocontrol strain Trichoderma harzianum 2413 in soil. Microbial Ecology, 49:25-33.
Saitou, N. and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing Phylogenetic tree. Molecular Biology Evolution, 4:406-425.
Samuel, G. J. and Hebbar, P. K. (2015). Trichoderma Identification and Agricultural Applications. APS Press, St Paul, Minnesota., pp.196.
Samuel, G. J., Ismaiel, A., Bon, M. C., De Respinis, S. and Petrini, O. (2010). Trichoderma asperellum sensulato consists of two cryptic species. Mycologia, 102:944-966.
Samuels, G. J., Lieckfeldt, E. and Nirenberg. H. (1999). Trichoderma asperellum, a new species with warted conidia, and redescription of T. viride. Sydowia, 51:71-88.
Seemadua, S. (1997). Application of antagonistic microorganisms for the control of root rot of tangerine caused by Phytophthora parasitica (Dastur.). (M.S. Thesis). Kasetsart Univ. Bangkok.
Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24:1596-1599.
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25:4876-4882.
Viterbo, A. and Chet, I. (2006). TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization. Molecular Plant Pathology, 7:249-258.
Watanabe, S., Kumakura, K., Kato, H., Iyozumi, H., Togawa, M. and Nagayama, K. (2005). Identification of Trichoderma SKT-1, a biological control agent against seedborne pathogens of rice. J. Gen. Plant Pathol., 71:351-356.
White, T. J., Bruns, T., Lee, S. and Taylor, J. (1990). Pcr Protocols: A Guide to Methods and Applications, pp. 315-322.
Yedidia, I., Shoresh, M., Kerem, Z., Benhamou, N., Kapulnik, Y. and Chet, I. (2003). Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T203) and the accumulation of phytoalexins. Appl. Environ.Microbiol., 69:7343-7353.
Zimand, G., Valinsky, L. and Elad, Y. (1994). Use of the RAPD procedure for the identification of Trichoderma strains. Mycology Research, 98:531-534.