The enzymatic process of lignocellulosic biomass for second generation bioethanol production, the benefits and challenges: A review

Main Article Content

Anindyawati, T.
Triwahyuni, E.
Maryana, R.
Sudiyani, Y.

Abstract

Environmental problems as well as energy security factors are the main reason for studying economic production pathway of renewable energy. Today, production of the second generation bioethanol is widely studied around the world. The production process consists of pretreatment, hydrolysis, fermentation and purification. After pretreatment, the hydrolysis process is the key for cost effective bioethanol production. While biological hydrolysis is better than chemical hydrolysis in many respects, current biological methods are not economical and are time-consuming. Genetic engineering techniques appear to offer potential for cutting production steps and improving efficiency and speed. To this end, a particular set of enzymes, cellulases, has received an intension scrutiny by researchers.  Three types of cellulases that have been used to produce glucose monomers synergically are endoglucanase, exoglucanase and β-glucosidase. This review also discuss on how recombinant enzymes can be utilized in enzymatic hydrolysis. Furthermore, the benefits and challenges of the second generation bioethanol production are also explained.

Article Details

How to Cite
Anindyawati, T., Triwahyuni, E., Maryana, R., & Sudiyani, Y. (2020). The enzymatic process of lignocellulosic biomass for second generation bioethanol production, the benefits and challenges: A review. International Journal of Agricultural Technology, 16(3), 529–544. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/6918
Section
Original Study

References

Adney, W. S., Chou, Y. C., Decker, S. R., Ding, S. Y., Baker, J. O., Kunkel, G., Vinzant, T. B. and Himmel, M. E. (2003). Heterologous expression of Trichoderma reesei 1,4-β-D-glucan cellobiohydrolase (Cel 7A). Applications of Enzymes to Lignocellulosics Chapter, 23:403-437.

Alfani, F., Gallifuoco, A., Saporosi, A., Spera, A. and Cantarella, M. (2000). Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw. Journal of Industrial Microbiology and Biotechnology, 25:184-192.

Almeida, J. R., Modig, T., Petersson, A., Hähn‐Hägerdal, B., Lidén, G. and Gorwa‐Grauslund, M. F. (2007). Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 82:340-349.

Alvira, P., Tomás-Pejó, E., Ballesteros, M. and Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource technology, 101:4851-4861.

Banerjee, G., Scott-Craig, J. S. and Walton, J. D. (2010). Improving enzymes for biomass conversion: a basic research perspective. Bioenergy research, 3:82-92.

Bar-On, Y. M. and Milo, R. (2019). The global mass and average rate of rubisco. Proceedings of the National Academy of Sciences, 116:4738-4743.

Boer, H., Teeri, T. T. and Koivula, A. (2000). Characterization of Trichoderma reesei cellobiohydrolase Cel7A secreted from Pichia pastoris using two different promoters. Biotechnology and bioengineering, 69:486-494.

Carvalheiro, F., Duarte, L. C. and Gírio, F. M. (2008). Hemicellulose biorefineries: a review on biomass pretreatments. Journal of Scientific and Industrial Research, 67:849-864.

Chandel, A. K., ES, C., Rudravaram, R., Narasu, M. L., Rao, L. V. and Ravindra, P. (2007). Economic and environmental impact of bioethanol production technologies: an appraisal. Biotechnology and Molecular Biology Review, 2:14-32.

Dastban, M., Scharft, H. and Qin, W. (2009). Fungal bioconversion of lignocellulosic residues: Opportunities and Perspective. International Journal of Biological Sciences, 5:578-595.

Devi, S., Dhaka, A. and Singh, J. (2016). Acid and alkaline hydrolysis technologies for bioethanol production : An overview. International Journal of Advanced Technology in Engineering and Science, 4:94-106.

Dien, B. S., Cotta, M. A. and Jeffries, T. W. (2003). Bacteria engineered for fuel ethanol production: current status. Applied microbiology and biotechnology, 63:258-266.

Eibinger, M., Bubner, P., Ganner, T., Plank, H. and Nidetzky, B. (2014). Surface structural dynamics of enzymatic cellulose degradation, revealed by combined kinetic and atomic force microscopy studies. The FEBS journal, 281:275-290.

Ellilä, S., Fonseca, L., Uchima, C., Cota, J., Goldman, G. H., Saloheimo, M., Sacon, V. and Siika-aho, M. (2017). Biotechnology for Biofuels Development of a low ‑ cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnology for Biofuels, 10:1-17.

Fang, H. and Xia, L. (2015). Heterologous expression and production of Trichoderma reesei cellobiohydrolase II in Pichia pastoris and the application in the enzymatic hydrolysis of corn stover and rice straw. Biomass and bioenergy, 78:99-109.

Feng, Y., Qi, X., Jian, H., Sun, R. and Jiang, J. (2012). Effect of inhibitors on enzymatic hydrolysis and simultaneous saccharification fermentation for lactic acid production from steam explosion pretreated lespedeza stalks. BioResources, 7:3755-3766.

Galbe, M. and Zacchi, G. (2002). A review of the production of ethanol from softwood. Applied microbiology and biotechnology, 59:618-628.

Gao, D., Chundawat, S. P., Krishnan, C., Balan, V. and Dale, B. E. (2010). Mixture optimization of six core glycosyl hydrolases for maximizing saccharification of ammonia fiber expansion (AFEX) pretreated corn stover. Bioresource technology, 101:2770-2781.

Gonzalez, R., Ramon, D. and Perez-Gonzales, J. A. (1992). Cloning, sequence analysis and yeast expression of the egl1 gene from Trichoderma longibrachiatum. Applied Microbiology and Biotechnology, 38:370-375.

Hahn-Hägerdal, B., Jeppsson, H., Olsson, L. and Mohagheghi, A. (1994). An interlaboratory comparison of the performance of ethanol-producing micro-organisms in a xylose-rich acid hydroysate. Applied microbiology and biotechnology, 41:62-72.

Hendriks, A. T. W. M. and Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource technology, 100:10-18.

Horn, S. J., Vaaje-Kolstad, G., Westereng, B. and Eijsink, V. G. H. (2012). Novel enzymes for degradation of cellulose. Biotechnology for Biofuels, 5:45. DOI 10.1186/1754-6834-5-45.

Huntley, C. J., Crews, K. D., Abdalla, M. A., Russell, A. E. and Curry, M. L. (2015). Influence of strong acid hydrolysis processing on the thermal stability and crystallinity of cellulose isolated from wheat straw. International Journal of Chemical Engineering, 2015.

Imran, M., Anwar, Z., Irshad, M., Asad, M. J. and Ashfaq, H. (2016). Cellulase production from species of fungi and bacteria from agricultural wastes and its utilization in industry: A review. Advances in Enzyme Research, 4:44-55.

Iranmahboob, J., Nadim, F. and Monemi, S. (2002). Optimizing acid-hydrolysis: a critical step for production of ethanol from mixed wood chips. Biomass and Bioenergy, 22:401-404.

Jing, X., Zhang, X. and Bao, J. (2009). Inhibition performance of lignocellulose degradation products on industrial cellulase enzymes during cellulose hydrolysis. Applied Biochemistry Biotechnololy, 159:696-707.

Khan, J. A. and Singh, S. K. (2011). Production of cellulase using cheap substrates by solid state fermentation. International Journal of Plant, Animal and Environmental Sciences, 1:179-187.

Kim, J. H., Block, D. E. and Mills, D. A. (2010). Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Applied microbiology and biotechnology, 88:1077-1085.

Kootstra, A. M. J., Beeftink, H. H., Scott, E. L. and Sanders, J. P. M. (2009). Optimization of the dilute maleic acid pretreatment of wheat straw. Biotechnology for biofuels, 14:1-14.

Kumar, B. A., Amit, K., Alok, K. and Dharm, D. (2018). Wheat bran fermentation for the production of cellulase and xylanase by Aspergillus niger NFCCI 4113. Research Journal of Biotechnology, 13:11-18.

Kumar, R., Singh, S. and Singh, O. V. (2008). Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Journal of industrial microbiology and biotechnology, 35:377-391.

Kurakake, M., Ide, N. and Komaki, T. (2007). Biological pretreatment with two bacterial strains for enzymatic hydrolysis of office paper. Current Microbiology, 54:424-428.

Larsson, S., Reimann, A., Nilvebrant, N. O. and Jönsson, L. J. (1999). Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Applied biochemistry and biotechnology, 77:91-103.

Lee, J-W., Gwak, K-S., Park, J-Y., Park, M-J., Choi, D-H., Kwon, M. and Choi, I-G. (2007). Biological pretreatment of softwood Pinus densiflora by three white rot fungi. The Journal of Microbiology, 45:485-491.

Lenihan, P., Orozco, A., O’neill, E., Ahmad, M. N. M., Rooney, D. W. and Walker, G. M. (2010). Dilute acid hydrolysis of lignocellulosic biomass. Chemical Engineering Journal, 156:395-403.

Lin, Y. and Tanaka, S. (2006). Ethanol fermentation from biomass resources: current state and prospects. Applied microbiology and biotechnology, 69:627-642.

Liu, T., Wang, T., Li, X. and Liu, X. (2008). Improved heterologous gene expression in Trichoderma reesei by cellobiohydrolase I gene (cbh1) promoter optimization. Acta Biochim Biophys Sin, 40:158-165.

Maryana, R., Nakagawa-izumi, A., Ohi, H. and Nakamata, K. (2016). Dependence of Enzymatic Saccharification on Residual-Lignin Structure in Sugarcane Bagasse Pretreated with Alkaline Sulfite. Japan TAPPI Journal, 1608.

Mojsov, K. (2010). Application of solid-state fermentation for cellulase enzyme production using Trichoderma viride. Perspectives of Innovations, Economics and Business, 2:108-110.

Mood, S. H., Golfeshan, A. H., Tabatabaei, M., Jouzani, G. S., Najafi, G. H., Gholami, M. and Ardjmand, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 27:77-93.

Moosavi-Nasab, M. and Majdi-Nasab, M. (2008). Cellulase production by Trichoderma reesei using sugar beet pulp. Iran Agricultural Research, 25:107-116.

Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M. and Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource technology, 96:673-686.

Mtui, G. Y. (2009). Recent advances in pretreatment of lignocellulosic wastes and production of value added products. African Journal of Biotechnology, 8:1398-1415.

Murad, H. A. and Azzaz, H. E. D. H. (2013). Cellulase production from rice straw by Aspergillus flavus NRRL 552. Science International, 1:103-107.

Olofsson, K., Bertilsson, M. and Lidén, G. (2008). A short review on SSF–an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnology for biofuels, 1:7.

Olsson, L. and Hahn-Hägerdal, B. (1993). Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates. Process Biochemistry, 28:249-257.

Pandey, A. (2003). Solid-state fermentation. Biochemical Engineering Journal, 13:81-84.

Pandey, A., Soccol, C. R. and Mitchell, D. (2000). New developments in solid state fermentation: bioprocesses and products. Process Biochemistry, 35:1153-1169.

Persson, I., Tjerneld, F. and Hahn-Hägerdal, B. (1991). Fungal cellulolytic enzyme production: a review. Process Biochemistry, 26:65-74.

Pocket guide to ethanol (2017). Washington, DC, USA: Renewable Fuels Association; 2017. Available from: http://www. ethanolrfa.org/2017/02/rfa-releases-2017-ethanol-industry-outlook-pocket-guide/.

Raghavendra, M. P., Nayaka, S. C. and Gupta, V. K. (2016). Microbial enzymes for conversion of biomass to bioenergy in Microbial enzymes for conversion of biomass to bioenergy, Gupta Editor, Springer, pp. 1-26.

Saha, B. C. (2003). Hemicellulose bioconversion. Journal of Industrial Microbiology and Biotechnology, 30:279-291.

Saha, B. C. (2004). Lignocellulose biodegradation and application in biotechnology. US Government Work. American Chemical Society, Chapter 1:2-14.

Sánchez, C. (2009). Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology advances, 27:185-194.

Sarrouh, B., Santos, T. M., Miyoshi, A., Dias, R. and Azevedo, V. (2012). Up-to-date insight on industrial enzymes applications and global market. Journal of bioprocessing and biotechniques, S4:1-10.

Sarsan, S. and Merugu, R. (2019). Role of bioprocess parameters to improve cellulase production : Part II. From cellulose to cellulase: Strategies to improve biofuel production. Elsevier B. V., pp.77-97.

Sassner, P., Galbe, M. and Zacchi, G. (2008). Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass and Bioenergy, 32:422-430.

Singh, P., Suman, A., Tiwari, P., Arya, N., Gaur, A. and Shrivastava, A. K. (2008). Biological pretreatment of sugarcane trash for its conversion to fermentable sugars. World Journal of Microbiology and Biotechnology, 24:667-673.

Singhania, R. R. (2009). Cellulolytic enzymes. Biotechnology for agro-industrial residues utilization. Nigam and Pandey Editors, Springer Netherlands, Chapter 20: 371-381. DOI 10.1007/978-1-4020-9942-7.

Singhania, R. R. (2011). Production of celluloytic enzymes for the hydrolysis of lignocellulosic biomass. In Biofuels; Academic Press. pp.177-201.

Sudiyani, Y. and Hermiati, E. (2010). Utilization of Oil Palm Empty Fruit Bunch (Opefb) for Bioethanol Production Through Alkali and Dilute Acid Pretreatment and Simultaneous Saccharification and Fermentation. Indonesian Journal of Chemistry, 10:261-267.

Sudiyani, Y., Faizal, F. A., Muryanto, Firmansyah, I., and Setiawan, A. A. R. (2019). Glutathione from Saccharomyces cerevisiae as By-Product of Second Generation Bioethanol from Oil Palm of Empty Fruit Bunch Fiber. Proceedings of IOP Conference Series: Materials Science and Engineering 536012142 doi:10.1088/1757-899X/536/1/012142.

Sun, F. F., Yang, H., Bai, R., Fang, X., Wang, F., He, J. and Tu, M. (2018). Enhanced heterologous expression of Trichoderma reesei Cel5A/Cel6A in Pichia pastoris with extracellular co‐expression of Vitreoscilla haemoglobin. Journal of Chemical Technology and Biotechnology, 93:35-42.

Sun, Y. and Cheng, J. (2002). Hydrolysis of lignocellulosic material for ethanol production: a review. Bioresource Technology, 83:1-11.

Taherzadeh, M. J. and Karimi, K. (2007). Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources, 2:472-499.

Taherzadeh, M. J. and Karimi, K. (2007). Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources, 2:707-738.

Taherzadeh, M. J. and Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International journal of molecular sciences, 9:1621-1651.

Thompson, D. N., Chen, H. C. and Grethlein, H. E. (1992). Comparison of pretreatment methods on the basis of available surface area. Bioresource Technology, 39:155-163.

Thompson, W. and Meyer, S. (2013). Second generation biofuels and food crops: co-products or competitors?. Global Food Security, 2:89-96.

Triwahyuni, E., Aristiawan, Y., Ariani, N., Abimanyu, H. and Anindyawati, T. (2018). The Evaluation of Substrates and Trichoderma sp. Isolates for Cellulase Production. Indonesian Journal of Applied Chemistry, 20:42-48.

van Zyl, W. H., Lynd, L. R., den Haan, R. and McBride, J. E. (2007). Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. In Biofuels. Springer, Berlin, Heidelberg, pp. 205-235.

Verardi, A., De Bari, I., Ricca, E. and Calabrò, V. (2012). Hydrolysis of lignocellulosic biomass: current status of processes and technologies and future perspectives. In Bioethanol. Intechopen.

Viikari, L., Vehmaanpera, J. and Koivula, A. (2012). Lignocellulosic ethanol: from science to industry. Biomass and Bioenergy, 46:13-24.

WHO (2018). https://www.who.int/news-room/detail/11-09-2018-global-hunger-continues-to-rise---new-un-report-says.

Wilson, B. D. (2009). Cellulases and biofuels. Current opinion in Biotechnology, 20: 295-299.

Wyman, C. E. (1999). Production of low cost sugars from biomass: progress, opportunities, and challenges. Biomass: A growth opportunity in green energy and value-added products, 1:867-872.