Phytoplankton community dynamics and its impacts on the quality of water and sediments in the recirculated-water earthen pond system for hybrid red tilapia (Oreochromis niloticus x mossambicus) farming

Main Article Content

Saeiam, Y.
Pichitkul, P.
Nedtharnn, U.
Wudtisin, I.

Abstract

This study was conducted to determine the correlation between phytoplankton communities and the quality of water and sediments in the recirculated water earthen pond system for hybrid red tilapia farming. The water was recirculated from another earthen pond used for Pacific white shrimp (Litopenaeus vannamei) farming. The results showed that 35 phytoplankton taxa were identified in water at different growth phases of hybrid red tilapia. The key factors influencing the quantity of phytoplankton were salinity and temperature during water recirculation. The freshwater diatom, Thalassiosira sp. was the most abundant phytoplankton. The variety of phytoplankton was highly dependent upon the phosphorus and nitrogen contents in water and on all soil quality indicators.

Article Details

How to Cite
Saeiam, Y., Pichitkul, P., Nedtharnn, U., & Wudtisin, I. (2020). Phytoplankton community dynamics and its impacts on the quality of water and sediments in the recirculated-water earthen pond system for hybrid red tilapia (Oreochromis niloticus x mossambicus) farming. International Journal of Agricultural Technology, 16(3), 695–710. retrieved from https://li04.tci-thaijo.org/index.php/IJAT/article/view/7017
Section
Original Study

References

Abou, Y., Darchambeau, F., Fiogbe, E. and Micha, J. C. (2012). Ecology of feeding nile tilapia under Azolla cover in earthen ponds: an assessment using structural equation modelling. International Journal of Biosciences, 2:105-111.

Afonina, E. Y. and Tashlykova, N. A. (2018). Plankton community and the relationship with the environment in saline lakes of Onon-Torey plain, Northeastern Mongolia. Saudi Journal of Biological Sciences, 25:399-408.

Aitor, L. M., Beatriz, F. M. and José I. G. P. (2019). Rapid colour changes in Euglena sanguinea (Euglenophyceae) caused by internal lipid globule migration. European Journal of Phycology, 54:91-101.

Anetekhai, M., Edwin, O., Osodein, O. and Morenikeji, T. (2018). Physical, chemical parameters and plankton in a tropical earthen pond catfish farm in Badagry, Nigeria. International Journal of Fisheries and Aquaculture, 10:71-76.

Ansari, E., Gadhia, M. and Ujjania, N. (2015). Phytoplankton diversity and water quality assessment of ONGC Pond, Hazira, 1:1-5.

APHA, AWWA and WPCF (1995). Standard methods for the examination of water and waste water 19th edition. Washington DC, American Public Health Association.

Bagchi, A. and Jha, P. (2011). Fish and fisheries in Indian heritage and development of pisciculture in India. Reviews in Fisheries Science, 19:85-118.

Battish, S. K. (1992). Freshwater zooplanktons of India, New Delhi, Oxford and IBH publishing co. Ltd.

Bhakta, J., Rana, S., Lahiri, S., Jana, B. and Ibrahim, S. (2015). Nutrients profile and fish growth of some fish culture ponds. International Journal of Environmental and Technological Sciences, 1:1-7.

Blake, G. R. and Hartge, K. H. (1986). Bulk density. In: Klute, A. ed. Methods of soil analysis, Part 1-Physical and mineralogical methods (second edition), Wisconsin, American Society of Agronomy and Soil Science Society of America, pp. 363-382.

Borowitzka, M. A. (2018). Chapter 3 - Biology of microalgae. In: Levine I.A and Fleurence J. eds. Microalgae in health and disease prevention. Massachusetts, Academic Press, pp. 23-72.

Boyd, C. and Tucker, S. C. (1998). Pond aquaculture water quality management, Massachusetts, Springer, pp. 576-600.

Boyd, C. E. (1982). Water quality management for pond fish culture, Amsterdam, Elsevier Scientific Publishing Co.

Boyd, C. E. (1990). Water quality in ponds for aquaculture, Department of Fisheries and Allied Aquaculture, Auburn University, Alabama, US.

Bremner, J. M. and Mulvaney, C. S. (1982). Total nitrogen. In: Page, A. L., Miller, R. H. and Keeny D. R. eds. Methods of soil analysis. Wisconsin, American Society of Agronomy and Soil Science Society of America, pp. 1119-1123.

Chowdhury, M. M. R., Shahjahan, M., Rahman, M. S. and Islam, M. (2008). Duckweed (Lemna minor) as supplementary feed in monoculture of nile tilapia, Oreochromis niloticus. Journal of Fisheries and Aquatic Science, 3:54-59.

Cunha, M. E., Quental-Ferreira, H., Parejo, A., Gamito, S., Ribeiro, L., Moreira, M., Monteiro, I., Soares, F. and Pousão-Ferreira, P. (2019). Understanding the individual role of fish, oyster, phytoplankton and macroalgae in the ecology of integrated production in earthen ponds. Aquaculture, 512:734297.

Dauda, A. B., Ajadi, A., Tola-Fabunmi, A. S. and Akinwole, A. O. (2019). Waste production in aquaculture: Sources, components and managements in different culture systems. Aquaculture and Fisheries, 4:81-88.

El-Naggar, H. A., Khalaf Allah, H. M. M., Masood, M. F., Shaban, W. M. and Bashar, M. A. E. (2019). Food and feeding habits of some Nile River fish and their relationship to the availability of natural food resources. The Egyptian Journal of Aquatic Research, 45:273-280.

Espinal, C. A. and Matulić, D. (2019). Recirculating aquaculture technologies. In Goddek, S., Joyce, A., Kotzen, B., and Burnell, G. M. eds. Aquaponics food production systems: Combined aquaculture and hydroponic production technologies for the Future. Cham, Springer International Publishing, pp. 35-76.

George, B., Nirmal Kumar, J. I. and Kumar, N. K. (2012). Study on the influence of hydrochemical parameters on phytoplankton distribution along Tapi estuarine area of Gulf of Khambhat, India. Egyptian Journal of Aquatic research, 38:157-170.

Hammer, O., Harper, D. A. T. and Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4:9.

Haque, M. R., Islam, M. A., Wahab, M. A., Hoq, M. E., Rahman, M. M. and Azim, M. E. (2016). Evaluation of production performance and profitability of hybrid red tilapia and genetically improved farmed tilapia (GIFT) strains in the carbon/nitrogen controlled periphyton-based (C/N- CP) on-farm prawn culture system in Bangladesh. Aquaculture Reports, 4:101-111.

Hoppenrath, M., Elbrachter M. and Drebes, G. (2009). Marine phytoplankton, Stuttgart, E Schweizerbart'sche Verlagsbuchhandlung, 9:240-241.

Hossain, M. Y., Jasmine, S., Ibrahim, A., Ahmed, Z., Ohtomi, J., Fulanda, B., Begum, M., Mamun, A., El-kady, M. and Wahab, M. (2007). A Preliminary observation on water quality and plankton of an earthen fish pond in Bangladesh: Recommendations for future studies. Pakistan Journal of Biological Sciences, 10:868-873.

Hulyal, S. B. and Kaliwal, B. B. (2009). Dynamics of phytoplankton in relation to physico-chemical factors of Almatti reservoir of Bijapur District, Karnataka State. Environmental Monitoring and Assessment, 153:45-59.

Ikpi, G. U., Offem, B. O. and Okey, I. B. (2013). Plankton distribution and diversity in tropical earthen fish ponds. Environment and Natural Resources Research, 3:45-51.

Johnson, L. P. and Jahn, T. L. (1942). Cause of the green-red color change in Euglena rubra. Physiological Zoology, 15:89-94.

Kang'ombe, J. and Brown, J. A. (2008). Effect of salinity on growth, feed utilization, and survival of Tilapia rendalli under laboratory conditions. Journal of Applied Aquaculture, 20:256-271.

Khaliullina, L. Y. and Demina, G. V. (2015). Seasonal dynamics of phytoplankton communities residing in different types of shallow waters in the Kuibyshev Reservoir (Russia). International Aquatic Research, 7:315-328.

Kuczynska, P., Jemiola-Rzeminska, M. and Strzalka, K. (2015). Photosynthetic pigments in diatoms. Marine drugs, 13:5847-5881.

Manickam, N., Saravana Bhavan, P., Santhanam, P., Muralisankar, T., Dinesh Kumar, S., Balakrishnan, S., Ananth, S. and Shenbaga Devi, A. (2020). Phytoplankton biodiversity in the two perennial lakes of Coimbatore, Tamil Nadu, India. Acta Ecologica Sinica, 40:81-89.

Miranda, T., Lima, H., Galon, B., Veronez, A., Moretti, M., Roper, J. and Gomes, L. (2016). Changes in water quality and the phytoplankton community associated with tilapia cage farming in tropical lakes. Aquatic Living Resources, 29:1-8.

Mo, W. Y., Cheng, Z., Choi, W. M., Man, Y. B., Liu, Y. and Wong, M. H. (2014). Application of food waste based diets in polyculture of low trophic level fish: Effects on fish growth, water quality and plankton density. Marine Pollution Bulletin, 85:803-809.

Moschonas, G., Gowen, R. J., Paterson, R. F., Mitchell, E., Stewart, B. M., McNeill, S., Glibert, P. M. and Davidson, K. (2017). Nitrogen dynamics and phytoplankton community structure: the role of organic nutrients. Biogeochemistry, 134:125-145.

Nelson, D. W. and Sommer, L. E. (1982). Total carbon, organic carbon, and organic matter. In: Page, A. L., Miller, R. H. and Keeney, D. R. eds. Methods of soil analysis Part 2 Chemical and microbiological properties, Wisconsin, American Society of Agronomy. pp. 539-579.

Ni, M., Yuan, J. L., Liu, M. and Gu, Z. M. (2018). Assessment of water quality and phytoplankton community of Limpenaeus vannamei pond in intertidal zone of Hangzhou Bay, China. Aquaculture Reports, 11:53-58.

Nwankwo, D. I. (1995). Euglenoids of some polluted storm-water channels in Lagos, Nigeria. Tropical Freshwater Biology, 4:29-39.

Olaveson, M. M. and Nalewajko, C. (2000). Effects of acidity on the growth of two Euglena species. Hydrobiologia, 433: 39-56.

Olsen, S. R. and Sommers, L. E. (1982). Phosphorus. In: Page, A.L., Miller R. H., and Keeney, D. R. eds. Methods of soil analysis part 2 chemical and microbiological properties. Wisconsin, American Society of Agronomy, Soil Science Society of America, pp. 403-430.

Perumal, P., Sampathkumar, P. and Karuppasamy, P. K. (1999). Studies on the bloom-forming species of phytoplankton in the Vellar estuary, southeast coast of India. Indian Journal of Marine Sciences, 28:400-403.

Rahman, M. M., Jewe, M. A. S., Khan, S. and Haque, M. M. (2007). Study of Euglenophytes bloom and it’s impact on fish growth in Bangladesh. Algae, 22:185-192.

Rapatsa, M. M. and Moyo, N. A. G. (2013). Performance evaluation of chicken, cow and pig manure in the production of natural fish food in aquadams stocked with Oreochromis mossambicus. Physics and Chemistry of the Earth, Parts A/B/C, 66:68-74.

Reed, M. L., Pinckney, J. L., Keppler, C. J., Brock, L. M., Hogan, S. B. and Greenfield, D. I. (2016). The influence of nitrogen and phosphorus on phytoplankton growth and assemblage composition in four coastal, southeastern USA systems. Estuarine, Coastal and Shelf Science, 177:71-82.

Reyes, A., Ramos, A. and Saturno, J. (2019). Phytoplankton abundance, diversity, evenness and composition in tilapia ponds fertilized with chicken manure and organic fertilizer. International Journal of Botany Studies, 4:72-76.

Rivera, V. F., Menezes, R. F. and Attayde, J. L. (2018). Effects of the Nile tilapia (Oreochromis niloticus L.) on the plankton community of a tropical reservoir during and after an algal bloom. Hydrobiologia, 817:393-401.

Roy, K. (2014). Sediment fertility based management of aquaculture in urban and rural ponds of Chhattisgarh. Journal of Inland Fisheries Society of India, 46:69-75.

Roy, K. (2017). Fertilization and stocking of unmanaged ponds through temporal plankton community structure map (PCSM): A nascent concept in aquaculture planning. PeerJ Preprints, 5:e2856v1.

Sáez-Plaza, P., Navas, M. J., Wybraniec, S., Michałowski, T. and Asuero, A. G. (2013). An overview of the Kjeldahl method of nitrogen determination. Part II. Sample preparation, working scale, instrumental finish, and quality control. Critical Reviews in Analytical Chemistry, 43:224-272.

Sebastian-Gonzalez, E., Navarro, J., Sánchez-Zapata, J., Botella, F. and Delgado Huertas, A. (2012). Water quality and avian inputs as sources of isotopic variability in aquatic macrophytes and macroinvertebrates. Journal of limnology, 71:191-199.

Siddika, F., Shahjahan, M. and Rahman, M. S. (2012). Abundance of plankton population densities in relation to bottom soil textural types in aquaculture ponds. International Journal of Agricultural Research Innovation and Technology, 2:56-61.

Singh, G., Bhatnagar, A., Kalla, A. and Singh, A. (2016). Fish yields in relation to water quality and plankton production in managed and unmanaged fresh water ponds. Journal of Experimental Agriculture International, 14:1-10.

Sipauba-Tavares, L. H., Donadon, A. R. V. and Milan, R. N. (2011). Water quality and plankton populations in an earthen polyculture pond. Brazilian Journal of Biology, 71:845-855.

Sun, C. -C., Wang, Y. -S., Wu, M. -L., Dong, J. -D., Wang, Y. -T., Sun, F. -L. and Zhang, Y. -Y. (2011a). Seasonal variation of water quality and phytoplankton response patterns in Daya Bay, China. International Journal of Environmental Research and Public Health, 8:2951-2966.

Sun, W., Dong, S., Jie, Z., Zhao, X., Zhang, H. and Li, J. (2011b). The impact of net-isolated polyculture of tilapia (Oreochromis niloticus) on plankton community in saline–alkaline pond of shrimp (Penaeus vannamei). Aquaculture International, 19:779-788.

Thunjai, T., Boyd, C. E. and Boonyaratpalin, M. (2004). Bottom soil quality in tilapia ponds of different age in Thailand. Aquaculture Research, 35:698-705.

Weber, J. B. (1997). Soil properties, herbicide sorption and model soil systems. In: Truelove, B. ed. Research methods in weed science (Second Edition), Alabama, Southern Weed Science Society, pp. 59-62.

Yusuf, Z. (2020). Phytoplankton as bioindicators of water quality in Nasarawa reservoir, Katsina State Nigeria. Acta Limnologica Brasiliensia, 32: e4.

Zhang, M., Shi, X., Yang, Z., Yu, Y., Shi, L. and Qin, B. (2018). Long-term dynamics and drivers of phytoplankton biomass in eutrophic Lake Taihu. Science of The Total Environment, 645:876-886.

Zimba, P. V., Huang, I. S., Gutierrez, D., Shin, W., Bennett, M. S. and Triemer, R. E. (2017). Euglenophycin is produced in at least six species of euglenoid algae and six of seven strains of Euglena sanguinea. Harmful Algae, 63:79-84.