Antimicrobial potential of vapour phase propionic acid against Salmonella typhimurium contaminated on Cherry tomato (Solanum lycopersicum var. cerasiforme)
Main Article Content
Abstract
Salmonella sp. is increasingly recognized as significant cause of foodborne illness. Several decontamination procedures have been applied to reduce the number of this organism. The potential of mechanically vapourized propionic acid solution (MVP) on the reduction of S. typhimurium contaminated on on Cherry tomato (Solanum lycopersicum var. cerasiforme) was reported. In vitro surface inhibition at low population and high population were shown. MVP at the concentration of 70.0% demonstrated the completely inhibition within 15 min at 4°C. At the concentration of 70.0% the absolutely inactivated and observed within 5 min at 50°C. For the evaluation of antimicrobial activity of MVP over time, the results indicated that ca. 8.00 Log10 CFU/ml reduction were found within 5, 10, 15, 20, 25 and 30 min at the concentration at 5.0%, 10.0%, 30.0%, 60.0% and 70.0%, respectively. The effectiveness of MVP increased when the temperature of MPV process increased. The reduction of S. typhimurium contaminated on Cherry tomato using MPV was expressed. The effectiveness of MVP on the reduction of S. typhimurium depended on the concentration of propionic acid solution, the fumigation time and temperature. The biological and physical changes of Cherry tomato during 15 days of storage at room temperature and 4°C after fumigated demonstrated that MPV at concentration of 70.0% for 5 min at 50°C and 4°C vapourized in 70.0% for 15 min, indicated that the completely inhibition of S. typhimurium contaminated Cherry tomato was accomplished. Moreover, the colour and physical appearance of fumigated Cherry tomato was not different from fresh and the control. The propionic acid in vapour phase demonstrated the antimicrobial potential against S. typhimurium at both after fumigation process and storage time.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Akbas, M. Y. and Olmez, H. (2007). Inactivation of Eschrichia coli and Listeria monocytogenes on iceberg lettuce by dip wash treatment with organic acids. Letters in Applied Microbiology, 44:619-624.
Arroyo-López, F. N. Bautista-Gallego, J., Durán-Quintana, M. C. and Garrido-Fernández, A. (2008). Modelling the inhibition of sorbic and benzoic acid on a native yeast cocktail from table olives. Food Microbilogy, 25:566-574.
Bari, M. L., Sabina, Y., Isobe, S., Uemura, T. and Isshiki, K. (2003). Effectiveness of electrolyzed acidic water in killing Escherichia coli O157: H7, Salmonella enteritidis, and Listeria monocytogenes on the surfaces of tomatoes. Journal of food protection, 66:542-548.
Bell, C. and Kyriakides, A. (2002). Salmonella: A praticalapproch to the organism and its control in food, Blackwell Science, UK.
Bell, R. G. and de Lacy, K. M. (1987). The efficacy of nisin, sorbic acid and monolaurin as preservatives in pasteurized cured meat products. Food Microbiology, 4:277-283.
Bhide, M. R., Paturkar, A. M., Sherikar, A. T. and Waskar, V. S. (2001). Presensitization of microorganisms by acid treatments to low dose gamma irradiation with special reference to Bacillus cereus. Meat Science, 58:253-258.
Bjornsdottir, K., Breidit, F., Jr. and McFeeters, R. F. (2006). Protective effect of organic acids on survival of Eschrichia coli O157:H7 in acidic environments. Applied and Environmental Microbiology, 72:660-664.
Blackburn, C. W. and McClure, P. J. (2002). Foodborne pathogens: Hazards, risk analysis, and control, Oca Raton: NetLibary Inc., CRC Press.
Brul, S. and Croote, P. (1999). Preservative agents in foods. Mode of action and microbial resistance mechanism. International Journal of Food Microbiology, 50:1-17.
Buchanan, R. L., Edelson-Mammel, S. G., Boyd, G. and Marmer, B. S. (2004). Influence of acidulant identify on the effects of pH and acid resistance on the radiation resistance of Escherichia coli O157:H7. Food Microbiology, 21:51-57.
CDC (2002). Outbreak of multidrug-resistant Salmonella Newport–United States, January-April 2002. JAMA, 288:951-953.
Cissé, M., Kouakou, A. C., Montet, D., Loiseau, G. and Ducamp-Collin, M. N. (2013). Antimicrobial and physical properties of edible chitosan films enhanced by lactoperoxidase syatem. Food Hydrocolloids, 30:576-580.
Da Silva Felício, M., Hald, T., Liebana, E., Allende, A., Hugas, M., Nguyen-The, C., Johannessen, G. S., Niskanen, T., Uyttendaele, M. and McLauchlin, J. (2015). Risk ranking of pathogens in ready-to-eat unprocessed foods of non-animal origin (FoNAO) in the EU: initial evaluation using outbreak data (2007–2011). Intenational Journal of Food Microbiology, 195:9-19.
Devidson, P. M. and Juneja, V. K. (1990). Antimicrobial agent. In Branen, A.L., Davidson, P.M. and Salminen, S. (eds.), Food additive. New York: Marcel Dekker, pp. 83-137.
Dickson, J. S. and Anderson, M. E. (1992). Microbiological decontamination of food animal carcasses by washing and sanitizing systems: a review. Journal of Food Protection, 55:133-140.
Dijksterhuis, J. and Samson, R. A. (2006). Zygomycetes, Food Spoilage Microorganisms. Elsevier, pp. 415-436.
Dubal, Z. B., Paturkar, A. M., Waskar, V. S., Zende, R. J., Latha, C., Rawool, D. B. and Kadam, M. M. (2004). Effect of food grade organic acids on inoculated S. aureus, L. monocytogenes, E. coli and S. Typhimurium in sheep/goat meat stored at refrigeration temperature. Meat Science, 66:817-821.
Espié, E., De Valk, H., Vaillant, V., Quelquejeu, N., Le Querrec, F. and Weill, F. X. (2005). An outbreak of multidrug-resistant Salmonella enterica serotype Newport infections linked to the consumption of imported horse meat in France. Epidemiology Infection, 133:373-376.
Gatto, M. A., Ippolito, A., Linsalata, V., Cascarano, N., Nigro, F. and Vanadia, S. (2011). Activity of extracts from wild edible herbs against postharvest fungal diseases of fruit and vegetable. Postharvest Biology and Technology, 61:72-82.
Goñi, P., López, P., Sánchez, C., Gómez-Lus, R., Becerril, R. and Nerín, C. (2009). Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chemistry, 116:982-989.
Hoffmann, S. and Scallan, E. (2017). Chapter 2 - epidemiology, cost, and risk analysis of foodborne disease. In: Foodborne Diseases, Third edition. Academic Press, pp. 31-63.
Huang, Y. and Chen, H. (2011). Effect of organic acids, hydrogenperoxide and mild heat on inactivation of Eschrichia coli O157:H7 on baby spinach. Food Control, 22:1178-1183.
Kirk, M. D., Little, C. L., Lem, M., Fyfe, M., Genobile, D., Tan, A., Threlfall, J., Paccagnella, A., Lightfoot, D., Lyi, H., McIntyre, L., Ward, L., Brown, D. J., Surnam, S. and Fisher, I. S. T. (2004). An outbreak due to peanuts in their shell caused by Salmonella enterica serotypes Stanley and Newport sharing molecular information to solve international outbreaks. Epidemiology Infection, 132:571-577.
Koseki, S. and Isobe, S. (2005). Prediction of pathogen growth on iceberg lettuce under real temperature history during distribution from farm to table. International Journal of Food Microbiology, 104:239-248.
Krusong, W., Dansai, P. and Itharat, A. (2012). Combination impact of turmeric extract and fermented vinegar on reduction of inoculated Salmonella Typhimurium on fresh lettuce, KMITL Science and Technology, 12:77-84.
Lenka, N., Pavel, K., Ladislav, K., Miluse, S. and Josef, P. (2009). Antimicrobial properties of selected essential oils in vapour phase against foodborne bacteria. Food Control, 20:157-160.
López, P., Sánchez, C., Batlle, R. and Nerín, C. (2005). Solid- and vapor-phase antimicrobial activities of six essential oils: susceptibility of selected foodborne bacterial and fungal strains. Journal of Agricultural Food Chemistry, 53:6939-6946.
Majowicz, S. E., Musto, J., Scallan, E., Angulo, F. J., Kirk, M., O'brien, S. J., Jones, T. F., Fazil, A., Hoekstra, R. M. and Studies, I. C. o. E. D. B. o. I (2010). The global burden of nontyphoidal Salmonella gastroenteritis. Clinical Infectious Diseases, 50:882-889.
Mcwatters, L. H., Chinnan, M. S., Walker, S. L., Doyle, M. P. and Lin, C. M. (2002). Consumer acceptance of fresh-cut iceberg lettuce treated with 2% hydrogen peroxide and mild heat. Journal of Food Protection, 65:1221-1226.
Mukherjee, A., Speh, D., Dyck, E. and Diez-Gonzalez, F. (2004). Preharvest evaluation of coliforms, Escherichia coli, Salmonella, and Escherichia coli O157: H7 in organic and conventional produce grown by Minnesota farmers. Journal of food protection, 67:894-900.
Odgen, S. K., Taylor, A. J., Dodd, E. R., Guerrero, I., Escalona, H. and Gallardo, F. (1996). The effect of combining propionic and ascorbic acid on the keeping qualities of fresh minced pork during storage. Lebensmittelwissenschaft and Technologie, 29:227-233.
Sagong, H. G., Lee, S. Y., Chang, P. S., Heu, S., Ryu, S. Choi, Y. J. and Kang, D. H. (2011). Comined effect of ultrasound and organic acids to reduce Eschrichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh lettuce. Posthavest Biology and Technology, 145:287-292.
Pagadala, S., Marine, S. C., Micallef, S. A., Wang, F., Pahl, D. M., Melendez, M. V., Kline, W. L., Oni, R. A., Walsh, C. S., Everts, K. L. and Buchanan, R. L. (2015). Assessment of region, farming system, irrigation source and sampling time as food safety risk factors for tomatoes. International Journal of Food Microbiology, 196:98-108.
Sangal, V., Harbottle, H., Mazzoni, C. J., Helmuth, R., Guerra, B., Didelot, X., Paglietti, B., Rabsch, W., Brisse, S., Weill, F. X., Roumagnac, P. and Achtman, M. (2010). Evolution and population structure of Salmonella enterica serovar Newport. Journal Bacteriology 192:6465-6476.
Scallan, E., Hoekstra, R., Mahon, B., Jones, T. and Griffin, P. (2015). An assessment of the human health impact of seven leading foodborne pathogens in the United States using disability adjusted life years. Epidemiology Infection, 143:2795-2804.
Sengun, I. Y. and Karapinat, M. (2004). Effectivness of lemon juice, vinegar and their mixture in elimination of Salmonella typhimurium on carrots. International Journal of Foodmicrobiology, 96:301-305.
Shariat, N., Kirchner, M. K., Sandt, C. H., Trees, E., Barrangou, R. and Dudley, E. G. (2013). Subtyping of Salmonella enterica serovar Newport outbreak isolates by CRISPRMVLST and determination of the relationship between CRISPR-MVLST and PFGE results. Journal of Clinical Microbiology, 51:2328-2336.
Sholberg, P. L. and Gaunce, A. P. (1996). Fumigation of stone fruit with acetic acid to control postharvest decay. Crop Protection, 15:681-686.
Sholberg, P. L., Haag, P., Hocking, R. and Bedford, K. (2000). The use of vinega vapor to reduce post harvest decay of harvested fruit. Journal of Horticultural Science, 35:898-903.
Sivapalasingam, S., Barrett, E., Kimura, A., Van Duyne, S., De Witt, W., Ying, M., Frisch, A., Phan, Q., Gould, E., Shillam, P., Reddy, V., Cooper, T., Hoekstra, M., Higgins, C., Sanders, J. P., Tauxe, R. V. and Slutsker, L. (2003). A multistate outbreak of Salmonella enterica serotype Newport infection linked to mango consumption: impact of waterdip disinfestation technology. Clinical Infectious Diseases, 37:1585-1590.
Stevens, A. A. (1982). Reaction products of chlorine dioxide. Environmental Health Perspectives, 46:101.
Stratford, M., Plurnridge, A., Nebe-von-Caron, G. and Archer, D. B. (2009). Inhibition of spoilage mould conidia by acetic acid and sorbic acid involves different modes of action, requiring modification of the classical weak-acid theory. International Journal of Food Microbiology, 136:37-43.
Surekha, M. and Reddy, S. M. (2000). Preservatives: Classsification and properties. In R. K. Robinson, C.A. Batt, and Patel Eds., Encyclopedia of food microbiology, New York: academic press, pp. 1710-1717.
Thomas, M. K., Murray, R., Flockhart, L., Pintar, K., Fazil, A., Nesbitt, A., Marshall, B., Tataryn, J. and Pollari, F. (2015). Estimates of foodborne illness-related hospitalizations and deaths in Canada for 30 specified pathogens and unspecified agents. Foodborne Pathogens and Disease 12:820-827.
Thomas, M. K., Murray, R., Flockhart, L., Pintar, K., Pollari, F., Fazil, A., Nesbitt, A. and Marshall, B. (2013). Estimates of the burden of foodborne illness in Canada for 30 specified pathogens and unspecified agents, circa 2006. Foodborne Pathogens and Disease, 10:639-648.
Tian, J., Bae, Y., Choi, N., Kang, D., Heu, S. and Lee, S. (2012). Survival and growth of foodborne pathogens in minimally processed vegetables at 4 and 15°C. Journal of Food Science, 77:M48-M50.
Tzortzakis, N. G. (2010). Ethanol, vinegar and organum vulgare oil capour suppress the development of anthracnose in tomato fruit. International Journal of Food Miicrobiology, 142:14-18.
Uyttendaele, M., Neyts, K., Vanderswalmen, H. and Debevere, J. (2004). Control of Aeromonas on minimally processed vegetables by decontamination with lactic acid, chlorinated water, or thyme essential oil solution. International Journal of Food Microbiology, 90:263-271.
Wang, C., Chang, T., Yang, H. and Cui, M. (2015). Antibacterial mechanism of lactic acid on physiological and morphological properties of SalmonellaEnteritidis, Escherichia coli and Listeria monocytogenes. Food Control, 47:231-236.
Wanwimolruk, S., Duangsuwan, W., Phopin, K. and Boonpangrak, S. (2017). Food safety in Thailand 5: the effect of washing pesticide residues found in cabbages and tomatoes. Journal of Consumer Protection and Food Safety, 12:209-221.
Ward, L. R., Maguire, C., Hampton, M. D., Smith, H. R., Little, C. L., Gillespie, I. A., O'Brien, S. J., Mitchell, R. T., Sharp, C. and Swann, R. A. (2002). Collaborative investigation of an outbreak of Salmonella enterica serotype Newport in England and Wales in 2001 associated with ready-to-eat salad vegetables. Communicable disease and public health, 5:301-304.
Yeesibsan, J. and Krusong, W. (2009). Effect of vapourized fermented vinegar on Salmonella enteritidis on eggshell surface. Asian Journal of Food and Agro-Industry, 2:882-890.
Ziuzina, D., Patil, S., Cullen, P. J., Keener, K. M. and Bourke, P. (2014). Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiology, 42:109-116.