The complete chloroplast genome of Ensete glaucum (Roxb.) Cheesman
Main Article Content
Abstract
Ensete glaucum (Roxb.) Cheesman, also called snow banana, originated in Asia and has ornamental and medicinal value. Results found its complete chloroplast genome, which is 168,483 bp in length and composed of a large single-copy region (LSC; 88,233 bp), a small single-copy region (SSC; 11,138 bp), and two inverted repeat regions (IR; 34,636 bp). The completely sequenced genome includes 135 coding regions of 87 protein-coding genes, 40 tRNAs, and 8 rRNAs. An analysis of repeat composition identified 31 simple sequence repeats and 44 long repeats, mostly in non-coding regions. Notably, the ycf1 and ycf2 genes contain various repeats within the coding sequences. A maximum likelihood phylogenetic analysis revealed a close relationship between E. glaucum and Musella lasiocarpa rather than Musa species. Within E. glaucum, the Vietnam sample had a chloroplast genome more similar to a sample from Taiwan than the Indian variety
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Carpenter, E. J., Matasci, N., Ayyampalayam, S., Wu, S., Sun, J., Yu, J., Vieira, F. R. J., Bowler, C., Dorrell, R. G., Gitzendanner, M. A., Li, L., Du, W., Ullrich, K. K., Wickett, N. J., Barkmann, T. J., Barker, M. S., Leebens-Mack, J. H. and Wong, G. K-S. (2019). Access to RNA-Sequencing Data from 1,173 Plant Species: The 1000 Plant Transcriptomes Initiative (1KP). GigaScience, 8:1-7.
Cosner, M., Jansen, R., Palmer, J. and Downie, S. R. (1997). The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families. Curr Genet, 31:419-429.
Chakraborty, P. (2018). Herbal Genomics as Tools for Dissecting New Metabolic Pathways of Unexplored Medicinal Plants and Drug Discovery. Biochimie Open, 6:9-16.
Chen, S., Xiang, L, Guo, X. and Li, Q. (2011). An Introduction to the Medicinal Plant Genome Project. Frontiers of Medicine, 5:178-84.
Cheng, Shifeng et al. Cheng, S., Melkonian, M., Smith, S. A., Brockington, S., Archibald, J. M., Delaux, P-M., Li, F-W., Melkonian, B., Mavrodiev, E.V., Sun, W., Fu, Y., Yang, H., Soltis, D. E., Graham, S. W., Soltis, P. S., Liu, X., Xu, X. and Wong, G. K-S. (2018). 10KP: A Phylodiverse Genome Sequencing Plan. GigaScience, 7:1-9.
Christelová, P., Valárik, M., Hřibová, E., Langhe E. D. and Dolezel, J. (2011). A multi gene sequence-based phylogeny of the Musaceae (banana) family. BMC Ecology and Evolution, 11:103.
Daniell, H., Lin, C. S., Yu, M. and Chang W. J. (2016). Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biology, 17:134.
Darriba, D., Taboada, G. L., Doallo, R. and Posada, D. (2012). JModelTest 2: More Models, New Heuristics and Parallel Computing. Nature Methods, 9:772-772.
Do, H. D. K., Kim, C., Chase, M. W. and Kim, J. H. (2020). Implications of plastome evolution in the true lilies (monocot order Liliales). Molecular Phylogenetics and Evolution, 148:106818.
Dobrogojski, J., Adamiec, M. and Luciński, R. (2020). The chloroplast genome: a review. Acta Physiologiae Plantarum, 42:98.
Doyle, J. J. and Doyle, J. L. (1987). A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. Phytochemical bulletin, 19:11-15.
Edgar, R. C. (2004). MUSCLE: A Multiple Sequence Alignment Method with Reduced Time and Space Complexity. BMC Bioinformatics, 5:113.
Feng, H., Chen, Y., Li, C., Xu, X., Luo, H. and He, C. (2022). Organelle DNA sequence data provide new insights into the maternal and paternal lineages of Musa species germplasms. Genetic Resources and Crop Evolution, 69:737-754.
Feng, H., Chen, Y., Xu, X., Luo, H., Wu, Y. and He, C. (2020) The complete chloroplast genome of Musa beccarii. Mitochondrial DNA Part B. 5:2384-2385.
Garrido-Cardenas, J.A., Mesa-Valle, C. and Manzano-Agugliaro, F. (2018). Trends in Plant Research Using Molecular Markers. Planta, 247:543-57.
Godwin, I. D., Aitken, E. A. B. and Smith, L. W. (1997), Application of inter simple sequence repeat (ISSR) markers to plant genetics. ELECTROPHORESIS, 18:1524-1528.
Greiner, S., Lehwark, P. and Bock, R. (2019). OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Research, 47:W59-W64
Grover, A. and Sharma, P. C. (2016). Development and Use of Molecular Markers: Past and Present. Critical Reviews in Biotechnology, 36:290-302.
Gitzendanner, M. A., Soltis, P. S., Wong, G. K., Ruhfel, B. R. and Soltis, D. E. (2018). Plastid Phylogenomic Analysis of Green Plants: A Billion Years of Evolutionary History. American Journal of Botany, 105:291-301.
Haberle, R. C., Fourcade, H. M., Boore, J. L. and Jansen, R. K. (2008). Extensive Rearrangements in the Chloroplast Genome of Trachelium caeruleum Are Associated with Repeats and tRNA Genes. Journal of Molecular Evolution, 66:350-361.
He, Y., Xiao, H., Deng, C., Xiong, L., Nie, H. and Peng, C. (2016). Survey of the Genome of Pogostemon Cablin Provides Insights into Its Evolutionary History and Sesquiterpenoid Biosynthesis. Scientific Reports, 6:26405.
Henry, R. J. (2012). Evolution of DNA Marker Technology in Plants. In: Robert J. Henry ed. Molecular Markers in Plants, Oxford, Blackwell Publishing Ltd., pp. 1-19.
Inta, A., Trisonthi, P. and Trisonthi, C. (2013). Analysis of Traditional Knowledge in Medicinal Plants Used by Yuan in Thailand. Journal of Ethnopharmacology, 149:344-51.
Janssens, S. B., Vandelook, F., De Langhe, E., Verstraete, B., Smets, E., Vandenhouwe, I. and Swennen, R. (2016). Evolutionary dynamics and biogeography of Musaceae reveal a correlation between the diversification of the banana family and the geological and climatic history of Southeast Asia. New Phytol, 210:1453-1465.
Joga, R. J., Sangma, E., Karmakar, B., Lyngdoh, V. and Aochen, C. (2021). Phytochemical Investigations on the Therapeutic Properties of Ensete Glaucum (Roxb.) Cheesman. Indian Journal of Traditional Knowledge, 20:68-73.
Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H. and Phillippy, A. A. (2017). Canu: Scalable and Accurate Long-Read Assembly via Adaptive k -Mer Weighting and Repeat Separation. Genome Research, 27:722-36.
Kurtz, S., Choudhuri, J. V., Ohlebusch, E., Schleiermacher, C., Stoye, J. and Giegerich, R. (2001). REPuter: The Manifold Applications of Repeat Analysis on a Genomic Scale. Nucleic Acids Research, 29:4633-4642.
Li, L. F., Häkkinen, M., Yuan, Y. M., Hao, G. and Ge, X. J. (2010). Molecular phylogeny and systematics of the banana family (Musaceae) inferred from multiple nuclear and chloroplast DNA fragments, with a special reference to the genus Musa. Molecular Phylogenetics and Evolution, 57:1-10.
Liu, J., Gao, C. W. and Niu, Y. F. (2018). The complete chloroplast genome sequence of flowering banana, Musa ornata. Mitochondrial DNA Part B Resources, 3:960–961.
Liu, X., Zhu, X., Wang, H., Liu, T., Cheng, J. and Jiang, H. (2020). Discovery and Modification of Cytochrome P450 for Plant Natural Products Biosynthesis. Synthetic and Systems Biotechnology, 5:187-99.
Martin, G., Baurens, F. C., Cardi, C., Aury, J. M. and D’Hont, A. (2013). The Complete Chloroplast Genome of Banana (Musa acuminata, Zingiberales): Insight into Plastid Monocotyledon Evolution. PLOS ONE, 8:e67350.
Martin, G., Baurens, F. C., Droc, G., Rouard, M., Cenci, A., Kilian, A., Hastie, A., Doležel, J., Aury, J-M.,Alberti, A., Carreel, F. and Angélique D’Hont, A. (2016). Improvement of the banana “Musa acuminata” reference sequence using NGS data and semi-automated bioinformatics methods. BMC Genomics, 17:243.
Martin, G., Cardi, C., Sarah, G., Ricci, S., Jenny, C., Fondi, E., Perrier, X., Glaszmann, J.-C., D'Hont, A. and Yahiaoui, N. (2020). Genome ancestry mosaics reveal multiple and cryptic contributors to cultivated banana. Plant Journal, 102:1008-1025.
Mayer, C. (2006-2010). Phobos 3.3.12. Retrieved from http://www.rub.de/ecoevo/cm/cm_phobos.htm.
Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A. and Lanfear, R. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, 37:1530-34.
Novák, P., Hřibová, E., Neumann, P., Koblížková, A., Doležel, J. and Macas, J. (2014) Genome-Wide Analysis of Repeat Diversity across the Family Musaceae. PLOS ONE, 9:e98918.
Ochiai, Y. (2012). From Forests to Homegardens: A Case Study of Ensete Glaucum in Myanmar and Laos. Tropics, 21:59-66.
One Thousand Plant Transcriptomes Initiative. (2019). One Thousand Plant Transcriptomes and the Phylogenomics of Green Plants. Nature, 574:679-685.
Pachuau, L., Dutta, R. S., Hauzel, L., Devi, T. B. and Deka, D. (2019). Evaluation of Novel Microcrystalline Cellulose from Ensete Glaucum (Roxb.) Cheesman Biomass as Sustainable Drug Delivery Biomaterial. Carbohydrate Polymers, 206:336-643.
Powell, W., Morgante, M., McDevitt, R., Vendramin, G. G. and Rafalski, J. A. (1995). Polymorphic simple sequence repeat regions in chloroplast genomes: Applications to the population genetics of pines. The Proceedings of the National Academy of Sciences, 92:7759-63.
POWO. (2021). “Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew.” Retrieved from http://www.plantsoftheworldonline.org.
Semagn, K., Bjørnstad, A. and Ndjiondjop, M. N. (2006). An Overview of Molecular Marker Methods for Plants. African Journal of Biotechnology, 5:2540-68.
Song, W., Ji, C., Chen, Z., Cai, H., Wu, X., Shi, C. and Wang, S. (2022). Comparative Analysis the Complete Chloroplast Genomes of Nine Musa Species: Genomic Features, Comparative Analysis, and Phylogenetic Implications. Frontiers in Plant Science, 13:832884
Vu, T. N., Pham, L. B. H., Nguyen, N. L., Luu, H. L., Huynh, T. T. H., Nguyen, H. H., Ha, H. H. and Le, T. T. H. (2021). Molecular Markers for Analysis of Plant Genetic Diversity. Vietnam Journal of Biotechnology, 18:589-608.
Wu, C. S., Lin, C. P., Hsu, C. Y., Wang, R. J. and Chaw, S. M. (2011). Comparative Chloroplast Genomes of Pinaceae: Insights into the Mechanism of Diversified Genomic Organizations. Genome Biology and Evolution, 3:309-319.
Wu, C. S., Sudianto, E., Chiu, H. L., Chao, C. P. and Chaw, S. M. (2021). Reassessing Banana Phylogeny and Organelle Inheritance Modes Using Genome Skimming Data. Frontiers in Plant Science, 12:713216.
Yemataw, Z., Muzemil, S., Ambachew, D., Tripathi, L., Tesfaye, K., Chala, A., Farbos, A., O’Neill, P., Moore, K., Grant, M. and Studholme, D. J. (2018). Genome sequence data from 17 accessions of Ensete ventricosum, a staple food crop for millions in Ethiopia. Data in Brief, 18:285-293.
Zhang, L., Guo, X., Wang, Z., Wang, M. and Hu, Q. (2018). Characterization of the complete chloroplast genome of Musella lasiocarpa. Mitochondrial DNA Part B: Resources, 3:728-729.