The Color Treatment from Batik Wastewater in Narathiwat Community by using Chemical Process
Keywords:
Batik wastewater, Color treatment, Chemical reagentsAbstract
The batik production process led to the wastewater that are contaminated with color and heavy metals ion inclusion in a dye molecule from dyeing and washing process. The objective of the project was study the color treatment efficiency in batik wastewater from two batik production communities of the small and micro community enterprise (SMCE) in Narathiwat province. The study of color treatment in batik wastewater by using the twelve chemical reagents such as Aluminum sulphate (Al2(SO4)3), Calcium chloride (CaCl2), Calcium hydroxide (Ca(OH)2), Hydrogen peroxide (H2O2), Iron (II) sulphate (FeSO4), Nitric acid (HNO3), Potassium chloride (KCl), Potassium hydroxide (KOH), Sulphuric acid (H2SO4), Sodium hypochlorite (NaClO), Sodium metabisulphite, (Na2S2O5) and Sodium nitrate (NaNO3) concentration 1, 3 and 5% were investigated for the type of chemical reagents that have the hightest color treatment efficiency. Then, the type of chemical reagents from the experiment results were studied the effect of stirring duration time of the mixing chemical reagents in wastewater at 10, 20, 30, 40, 60 and 90 minutes. The results were shown that 3% of sodium hypochlorite (NaClO) with stirring duration time 90 minutes was the highest color removal. The highest color treatment efficiency of batik wastewater from the community 1 and community 2 were about 90.15 and 76.90%, respectively. The pH of the system after wastewater treatment were about 10.00–11.20.
References
ประกาศกระทรวงทรัพยากรธรรมชาติและสิ่งแวดล้อม. (2553). กำหนดมาตรฐานควบคุมการระบายน้ำทิ้งจากระบบบำบัดน้ำเสียรวมของชุมชน. ราชกิจจานุเบกษาฉบับประกาศทั่วไป, 127, ตอนพิเศษ 69ง.
สันทัด ศิริอนันต์ไพบูลย์. (2557). ระบบบำบัดน้ำเสีย : Wastewater treatment system. ท้อป.
Cheung, P. C. W., Williams, D. R., Kirk, D. W., Murphy, P. J., Barton, S. J., & Barker, J. (2023). Decolourisation of metal-azo dyes in wastewaters by sodium peroxodisulphate : A template for experimental investigations. The Open Environmental Research Journal, 16, 1-18. http://doi.org/10.2174/25902776-v16-e230216-2022-2
Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17, 145–155.
David, H. F. L., & Bele, G. L. (1999). Wastewater treatment. CRC Press.
Dawood, S., & Sen, T. K. (2014). Review on dye removal from Its aqueous solution into alternative cost effective and non-conventional adsorbents. Journal of Chemical and Process Engineering, 1(104), 1-11. https://doi.org/10.17303/jce.2014.105
Fadzli, J., Puasa, S.W., Him N.R.N., Hamid, K.H.K., & Amri, N. (2024). Electrocoagulation : Removing colour and COD from simulated and actual batik wastewater. Desalination and Water Treatment, 320(1), 2100658. https://doi.org/10.1016/j.dwt.2024.100658
Fatimah, I., Sahroni, I., Dahlyani, M. S. E., Oktaviyani, A. M. N., & Nurillahi, R. (2021). Surfactant-modified Salacca zalacca skin as adsorbent for removal of methylene blue and batik’s wastewater. Materials Today: Proceedings, 44(3), 3211-3216. https://doi.org/10.1016/ j.matpr.2020.11.440
Hu, X., Meneses, Y. E., & Hassan, A. A. (2020). Integration of sodium hypochlorite pretreatment with co-immobilized microalgae/ bacteria treatment of meat processing wastewater. Bioresource Technology, 304(12), 122953. https://doi.org/10.1016/j.biortech.2020.122953
Istirokhatun, T., Susanto, H., Budihardjo, M. A., Septiyani, E., Wibowo, A. R., & Karamah, E. F. (2021). Treatment of batik industry wastewater plant effluent using nanofiltration. International Journal of Technology, 12(4), 770-780. https://doi.org/10.14716/ijtech. v12i4.4645
Juliani, A., Rahmawati, S., & Yoneda, M. (2021). Heavy metal characteristics of wastewater from batik industry in Yogyakarta area, Indonesia. International Journal of GEOMATE, 20(80), 59-67. https://doi.org/10.21660/2021.80.6271
Katheresan, V., Kansedo, J., & Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4), 4676-4697. https://doi.org/10.1016/j.jece.2018.06.060
Oktavia, S., Rohmah, S., & Novi, C. (2024). Application of chitosan from Litopenaeus vannamei and baglog waste from Pleurotus ostreatus for decolorizing batik wastewater. Jurnal Penelitian Pendidikan IPA, 10(2), 638-647. https://doi.org/10.29303/jppipa.v10i2.5859
Piaskowski, K., DąbrowsKa, R. S., & Zarzycki, P. K. (2018). Dye removal from water and wastewater using various physical, chemical, and biological processes. Journal of AOAC international, 101(5), 1371-1384. https://doi.org/10.5740/jaoacint.18-0051
Pizzolato, T. M., Carissimi, E., Machado, E. L. & Schneider, I. A. H. (2002). Colour removal with NaClO of dye wastewater from an agate-processing plant in Rio Grande do Sul, Brazil. International Journal of Mineral Processing, 65(3), 203-211. http://doi.org/10.1016/S0301-7516(01)00082-5
Qomariyah, L., Kadir, A., Hirano, T., Tejamaya, M., Fauziyah, M., Putra, N. R., Sunarno, S. D. A. M., & Atmajaya, H. (2024) Sustainable removal of pigment dye from traditional batik textile wastewater using ZnO photocatalysis. South African Institution of Chemical Engineers, 50, 223-234. https://doi.org/10.1016/j.sajce.2024.08.010
Salim, C., & and Prihandrijanti, M. (2023). The potential of ozone/UV system in the treatment of batik wastewater in Indonesia. Journal of Applied Science and Advanced Engineering, 1(2), 42-46. https://doi.org/10.59097/jasae.v1i2.14
Setianingsih, N. I., Hadiyanto, Budihardjo, M. A., Yuliasni, R., Vistanty, H., Mukimin, A., & Sudarno. (2024). Characteristics and performance of aerobic granular sludge technology in the treatment of real batik textile wastewater. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-024-05832-0
Shaharuddin, S. I. S., Shamsuddin, M. S., Drahman, M. H., Hasan, Z., Mohd Asri, N. A., Nordin, A. A., & Shaffiar, N. M. (2021). A review on the Malaysian and Indonesian batik production, challenges, and innovations in the 21st century. SAGE Open, 11(3), 1-19. https://doi.org/ 10.1177/21582440211040128
Soedjono, E. S., Slamet, A., Fitriani, N., Sumarlan, M. S., Supriyanto, A., Isnadina, D. R. M., & Othman, N. B. (2021). Residual seawater from salt production (bittern) as a coagulant to remove lead (Pb2+) and turbidity from batik industry wastewater. Heliyon, 7(11), e08268. https://doi.org/10.1016/j.heliyon.2021.e08268
Tchobanoglous, G., Burton, F. L., & Stensel, H. D. (2004). Wastewater engineering treatment and reuse (4th ed.). McGraw-Hill Book Company.
Urano, H., & Fukuzaki, S. (2011). The mode of action of sodium hypochlorite in the decolorization of azo dye orange II in aqueous solution. Biocontrol Science, 16(3), 123-126. https:// doi.org/10.4265/bio.16.123
Utami, M., Wang, S., Musawwa, M. M., Mafruhah, L., a, Fitri, M., Wijaya, K., Johnravindar, D., Abd-Elkader, O. H., Yadav, K. K., Ravindran, B., Chung, W. J., Chang, S. W., & Ramanujam, G. M. (2023). Photocatalytic degradation of naphthol blue from Batik wastewater using functionalized TiO2-based composites. Chemosphere. 337, 139224. https://doi.org/10. 1016/j.chemosphere.2023.139224
Zakaria, N., Rohani, R., Wan Mohtar, W. H. M., Purwadi. R, Sumampouw, G. A., & Indarto, A. (2023). Batik effluent treatment and decolorization : A review. Water, 15(7), 1-24. https://doi.org/ 10.3390/w15071339
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Pridiyathorn Science Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ข้อความลิขสิทธิ์ เติมด้วยค่ะ