Phenolic compounds and biological activities of sea grape and green feather algae

Authors

  • Intira Koodkaew Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom
  • Jidapa Thawornsrisakul Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom
  • Pattrawan Khamboonruang Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom
  • Bongkot Wichachucherd Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom

Keywords:

Phytochemical, Antioxidant, Tyrosinase, α-Glucosidase

Abstract

Sea grapes and green feather algae are important seaweeds that are commercially cultivated and commonly consumed. This study aimed to compare the phenolic compounds and antioxidant properties of these seaweed extracts using the 2,2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH), ferric reducing antioxidant power (FRAP) and reducing power assays, as well as their inhibitory effects on the enzymes tyrosinase and α-glucosidase. Samples of sea grapes and green feather algae were collected from Trang province in January, April and July. The results showed that seaweed species and harvested time effects on phenolic compound content and biological activities of seaweed extract. Green feather algae had significantly higher amounts of phenolic compounds, flavonoids, antioxidant properties and tyrosinase inhibitory activity than sea grapes. However, there was no significant difference in α-glucosidase inhibitory activity between the two seaweeds. The samples collected in January had the highest amounts of flavonoids, FRAP and tyrosinase inhibitory activity, while those collected in April had the highest amounts of phenolic compounds, reducing power and α-glucosidase inhibitory activity. The extracts from sea grapes and green feather algae had relatively high inhibitory activities against tyrosinase and α-glucosidase, ranging from 58.33% to 97.55% and from 42.66% to 72.27%, respectively. Therefore, the extracts from sea grapes and green feather algae could be considered as potential sources of functional food ingredients and pharmaceuticals.

References

กองวิจัยและพัฒนาการเพาะเลี้ยงสัตว์น้ำชายฝั่ง. (2560). การแพร่กระจายของสาหร่ายพวงองุ่น การจัดการความรู้การเพาะเลี้ยงและการจัดการสาหร่ายพวงองุ่นหลังการเก็บเกี่ยว จังหวัดเพชรบุรี.

วสันต์ สุมินทิลี่, ปนิดา บรรจงสินศิริ, จันทรา ไพรบูรณ์, และวรรณวิมล คล้ายประดิษฐ์. (2557). กิจกรรมการต้านอนุมูลอิสระของสารสกัดหยาบจากสาหร่ายพวงองุ่น (Caulerpa lentillifera) สาหร่ายทุ่น (Sargassum oilgocystum) และสาหร่ายเขากวาง (Gracilaria changii). วารสารเทคโนโลยีการอาหาร มหาวิทยาลัยสยาม, 9(1), 63–75.

ศุลีมาศ สุทธิเนียม. (2552). การใช้สาหร่ายขนนก Caulerpa sertularioides บำบัดไนโตรเจนและฟอสฟอรัสในน้ำจากการเลี้ยงกุ้งขาวแวนนาไม Penaeus vannamei แบบพัฒนา [วิทยานิพนธ์ปริญญาโท]. มหาวิทยาลัยสงขลานครินทร์. http://kb.psu.ac.th/psukb/handle/2010/6074

อรอนงค์ ศรีพวาทกุล, มนทกานติ ท้ามติ้ม, และประพัฒน์ กอสวัสดิ์พัฒน์. (2564). การพัฒนาผลิตภัณฑ์ผงโรยข้าวปลาเสริมสาหร่ายพวงองุ่น. วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏอุดรธานี, 9(2), 69–82.

อุไรวรรณ วัฒนกุล, วัฒนา วัฒนกุล, และมาโนช ขำเจริญ. (2562). คุณค่าทางโภชนาการและสารพฤกษเคมีที่สำคัญในสาหร่ายพวงองุ่น (Caulerpa lentillifera) ที่เลี้ยงด้วยระดับธาตุอาหารต่างกัน. รายงานการวิจัย คณะวิทยาศาสตร์และเทคโนโลยีการประมง, มหาวิทยาลัยเทคโนโลยีราชมงคลศรีวิชัย.

Arguelles, E. D. L. R. (2021). Evaluation of antioxidant capacity, tyrosinase inhibition, and antibacterial activities of brown seaweed, Sargassum ilicifolium (Turner) C. Agardh 1820 for cosmeceutical application. Journal of Fisheries and Environment, 45, 64–77.

Benzie, F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70–76.

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25–30.

Cheng, A. Y. Y., & Fantus, I. G. (2005). Oral antihyperglycemic therapy for type 2 diabetes mellitus. Canadian Medicinal Association Journal, 172(2), 213–226.

de Melo, N. S. M., Cardoso, L. G., de Castro Nunes, J. M. C., Brito, G. B., Caires, T. A., de Souza, C. O., Portz, L., & Druzian J. I. (2021). Effects of dry and rainy seasons on the chemical composition of Ulva fasciata, Crassiphycus corneus, and Sargassum vulgare seaweeds in tropical environment. Brazillian Journal of Botany, 44, 331–344.

Estrada, J. L., & Dioniso-sese, M. L. (2020). Sea Grapes (Caulerpa spp.) (Chlorophyta: Caulerpaceae) from Coron, Northern Palawan, Philippines with notes on their harvest and production. Tropical Natural History, 20(3), 255–264.

Estrada, J. L., Bautista, N. S., & Dioniso-sese, M. L. (2020). Morphological variation of two common sea grapes (Caulerpa lentillifera) and (Caulerpa racemose) from selected regions in the Philippines. Biodiversitas, 21(5), 1823–1832.

Fajriah, S., Rizki, I. F., & Sinurat, E. (2021). Characterization and analysis of the antidiabetic activities of sulphated polysaccharide extract from Caulerpa lentillifera. Pharmacia, 68(4), 869–875.

Farvin, K. H. S., & Jacobsen, C. (2013). Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish Coast. Food Chemistry, 138, 1670-1681.

Ismail, M. F., Ramaiya, S. D., Zakaria, M. H., Ikhsan, N. F. M., & Awang, M. A. (2020). Mineral content and phytochemical properties of selected Caulerpa species from Malaysia. Malaysia Journal of Science, 39(3), 115–131.

Kim, Y. J., & Uyama, H. (2005). Tyrosinase inhibitors from natural and synthetic source: structure, inhibition mechanism and prospective for the future. Cellular and Molecular Life Sciences, 62, 1707–1723.

Kumar, S., Sahoo, D., & Levine, I. (2015). Assessment of nutritional value in a brown seaweed Sargassum wightii and their seasonal variations. Algal Research, 9, 117–125.

Lewmanomont, K., & Hisao, O. (1995). Common seaweeds and seagrasses of Thailand. Faculty of Fisheries, Kasetsart University.

Neagu, E., Radu, G. L., Albu, C., & Paun, G. (2016). Antioxidant activity, acetylcholinesterase and tyrosinase inhibitory potential of Pulmonaria officinalis and Centarium umbellatum extracts. Saudi Journal of Biological Science, 25, 578–585.

Nguyen, D., Novakava, A., Spurna, K., Hricko, J., Phung, H., Viktorova, J., Stranska, M., Hajslova, J., & Ruml, T. (2017). Antidiabetic compounds in stem juice from banana. Czech Journal of Food Science, 35(5), 407–413.

Pattarach, K., Mayakun, J., & Draisma, S. G. A. (2019). An enigmatic Caulerpa macrodisca Decaisne (Chlorophyta) from the mangrove channels on the Andaman Sea Coast of Thailand. Journal of Fisheries and Environment, 43(2), 27–42.

Paul, N. A., Neveux, N., Magnusson, M., & de Nys, N. (2014). Comparative production and nutritional value of “sea grapes” the tropical green seaweeds Caulerpa lentillifera and C. racemose. Journal of Applied Phycology, 26, 1833–1844.

Peinado, I., Girón, J., Koutsidis, G., & Ames, J. M. (2014) Chemical composition, antioxidant activity and sensory evaluation of five different species of brown edible seaweeds. Food Research International, 66, 36–44.

Ratana-arporn, P., & Anong, C. (2006). Nutritional evaluation of tropical green seaweeds Caulerpa lentillifera and Ulva reticulata. Kasetsart Journal – Natural Science, 40, 75–83.

Ryu, J. W., Lee, M. S., Yim, M. J., Lee, J. M., Lee, D. S., Kim, Y. M., & Eom, S. H. (2023). α-amylase and α-glucosidase inhibition effects of Korean edible brown, green, and red seaweed extracts. Fisheries and Aquatic Science, 26, 181–187.

Sharma, S. L., Neves, J., Funderud, L.T., Mydland, M., & Verland, S. J. H. (2018). Seasonal and depth variations in the chemical composition of cultivated Saccharina latissima. Algal Research, 32, 107–112.

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. American Journal Enology Viticulture, 16, 144–158.

Solano, F., Briganti, S., Picardo, M., & Ghanem, G. (2006). Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Research, 19, 550–571.

Yap, F., Tay, V., Tan, H., Yow, Y., & Chew, J. (2019). Decoding antioxidant and antibacterial potentials of Malaysian green seaweeds: Caulerpa racemosa and Caulerpa lentillifera. Antibiotics, 8(3). https://doi.org/10.3390/antibiotics8030152

Yen, G. C., & Chen, H. Y. (1995). Antioxidant activity of various tea extracts in relation to their antimutagenicity. Journal of Agricultural and Food Chemistry, 43, 27–32.

Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64,

–559.

Downloads

Published

2024-08-27

How to Cite

Koodkaew, I., Thawornsrisakul, J., Khamboonruang, P., & Wichachucherd, B. (2024). Phenolic compounds and biological activities of sea grape and green feather algae. ศวท : ศิลปศาสตร์ วิทยาศาสตร์และเทคโนโลยี, 1(2), 32–48. retrieved from https://li04.tci-thaijo.org/index.php/art-science/article/view/2229

Issue

Section

Research Article

Categories