Supplementation of Baeckea frutescens in Oil Palm Fronds Ensiled with Crude Glycerin on Fermentation Quality and Chemical Composition

Authors

  • ์Nirandorn Nakdaeng Faculty of Agriculture, Princess of Naradhiwas University, Muang, Narathiwas, 96000, Thailand
  • Wattana Temdee Faculty of Agriculture, Princess of Naradhiwas University, Muang, Narathiwas, 96000, Thailand
  • Sirirat Buaphan Department of Animal science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
  • Kanok Chaovapasee Faculty of Agriculture, Princess of Naradhiwas University, Muang, Narathiwas, 96000, Thailand

Keywords:

Oil Palm Fronds, Baeckea Frutescens, Silage Quality, Physical Characteristics, Chemical Composition

Abstract

The objective of this study was to investigate the physical characteristics, chemical composition, and fermentation quality of oil palm fronds ensiled with crude glycerin and supplemented with Baeckea frutescens L. at various levels. The experiment was arranged in a Completely Randomized Design (CRD). The treatments consisted of Baeckea frutescens supplementation at 0, 7, and 14% (fresh weight basis), with 10% crude glycerin added to all treatment groups. The samples were ensiled in plastic bags under anaerobic conditions for 21 days. The results showed that all silages exhibited good physical characteristics, appearing dark brown with a pleasant fermented odor. The pH values significantly increased with increasing levels of Baeckea frutescens (4.41, 4.86, and 5.15, respectively; p<0.01). However, the fermentation quality remained satisfactory, characterized by high lactic acid concentrations (6.04–6.14%) and low butyric acid content (0.03–0.06%) across all treatments. Regarding nutritive value, Baeckea frutescens supplementation significantly improved chemical composition. The 14% supplementation level resulted in the lowest Acid Detergent Fiber (ADF) content (38.42%) compared to the control group (41.78%) (p<0.01) and significantly reduced Neutral Detergent Fiber (NDF) content compared to the control (59.58% vs. 61.74%, p<0.05). Furthermore, the 14% supplementation level yielded the highest Nitrogen-Free Extract (NFE) and Total Digestible Nutrients (TDN) (54.10% and 59.03%, respectively, p<0.05). In conclusion, supplementing Baeckea frutescens at 14% with crude glycerin can improve nutritive value by reducing fiber content and enhancing energy value without adversely affecting fermentation quality.

References

กรมปศุสัตว์. (2547). มาตรฐานพืชอาหารสัตว์คุณภาพดี. (พิมพ์ครั้งที่ 1). โรงพิมพ์ชุมชนสหกรณ์การเกษตรแห่ง ประเทศไทย.

An, N. T. G., Huong, L. T., Satyal, P., Tai, T. A., Dai, D. N., Hung, N. H., Ngoc, N. T. B., & Setzer, W. N. (2020). Mosquito larvicidal activity, antimicrobial activity, and chemical compositions of essential oils from four species of Myrtaceae from central Vietnam. Plants, 9(4), 544. https://doi.org/10.3390/plants9040544

AOAC. (2012). Official Methods of Analysis (19th ed.). Association of Official Analytical Chemists.

Bernardes, T.F., Gervásio, J.R.S., De Morais, G. & Casagrande, D.R. (2019). Technical note: A comparison of methods to determine pH in silages. Journal of Dairy Science. 102(10), 9039 - 9042. https://doi.org/10.3168/jds.2019-16553

Chen, J., Stokes, M.R. & Wallace, C.R. (1994). Effects of enzyme-inoculant systems on preservation and nutritive value of hay crop and corn silages. Journal of Dairy Science. 77(2), 501 - 512. . https://doi.org/10.3168/jds.S0022-0302(94)76978-2

Chen, L., Li, X., Wang, Y., Guo, Z., Wang, G., & Zhang, Y. (2023). The performance of plant essential oils against lactic acid bacteria and adverse microorganisms in silage production. Frontiers in Plant Science, 14, 1285722. https://www.frontiersin.org/ journals/plant-science/articles/10.3389/fpls.2023.1285722/full

Cunha, S. S., Orrico Junior, M. A. P., Reis, R. A., Reis, S. D. S., Silva, M. S. J., Orrico, A. C. A., & Schwingel, A. W. (2020). Use of crude glycerine and microbial inoculants to improve the fermentation process of Tifton 85 haylages. Tropical Animal Health and Production, 52, 871 – 879. https://doi.org/10.1007/s11250-019-02082-y

Fan, X., Zhao, S., Yang, F., Yang, F., Wang, Y., & Wang, Y. (2021). Effects of lactic acid bacterial inoculants on fermentation quality, bacterial community, and mycotoxins of alfalfa silage under vacuum or nonvacuum treatment. Microorganisms, 9(12), 2614. https://doi.org/10.3390/microorganisms9122614

Guo, X., Xu, D., Li, F., Bai, J., & Su, R. (2022). Current approaches on the roles of lactic acid bacteria in crop silage. Microbial Biotechnology, 16(1), 67 - 87. https://doi.org/ 10.1111/1751-7915.14184

Kim, M.J., Jung, U.S., Jeon, S.W., Lee, J.S., Kim, W.S., Lee, S.B., Kim, Y.C., Kim, B.Y., Wang, T. & Lee, H.G. (2016). Improvement of milk fatty acid composition for production of functional milk by dietary phytoncide oil extracted from discarded pine nut cones (Pinus koraiensis) in Holstein dairy cows. Asian-Australasian Journal of Animal Sciences. 29, 1734 - 1741. https://doi.org/10.5713/ajas.16.0281

Kusmiati, R., Syaputri, Y., Abun, & Safitri, R. (2024). Pretreatment and fermentation of lignocellulose from oil palm fronds as a potential source of fibre for ruminant feed: a review. Journal of Sustainable Agriculture and Environment, 3(3), 1 - 18. https://doi.org/10.1002/sae2.70003

Leventini, M.W., Hunt, C.W., Roffler, R.E., & Casebolt, D.G. (1990). Effect of dietary level of barley-based supplements and ruminal buffer on digestion and growth by beef cattle. Journal of Animal Science. 68(12), 4334 - 4344. https://doi.org/10.2527/1990. 68124334x.

Li, X., Chen, F., Xu, J., Guo, L., Xiong, Y., Lin, Y., Ni, K., & Yang, F. (2022). Exploring the addition of herbal residues on fermentation quality, bacterial communities, and ruminal greenhouse gas emissions of paper mulberry silage. Frontiers in Microbiology, 13, 951335. https://doi.org/10.3389/fmicb.2021.820011

Mookiah, S., Wan Mohamed, W.N., Md Noh, A., Ibrahim, N.A., Asraf Fuat, M.A., Ramiah, S., Chung, E.L.T., & Mat Dian, N.L.H. (2020). Treated oil palm frond and its utilization as an improved feedstuff for ruminants-An overview. Asian-Australasian Journal of Animal Sciences, 20, 0360. https://doi.org/10.5713/ajas.20.0360

Mpanza, T., & Mani, S. (2023). Effects of Vachellia mearnsii tannin extract as an additive on fermentation quality, aerobic stability, and microbial modulation of maize silage. Microorganisms, 11(11), 2767. https://doi.org/10.3390/microorganisms11112767

Orrico Junior, M. A. P., Duarte, J. A. V., Crone, C., Neves, F. O., Reis, R. A., Orrico, A. C. A., Schwingel, A. W., & Vilela, D. M. (2017). The use of crude glycerin as an alternative to reduce fermentation losses and enhance the nutritional value of Piată grass silage. Revista Brasileira de Zootecnia, 46(8), 638 - 644. https://doi.org/10.1590/s1806-92902017000800002

Santoso, B., Hariadi, B.T., & Lekitoo, M.N. (2024). Fermentation characteristics, in vitro nutrient digestibility, and methane production of oil palm frond-based complete feed silage treated with cellulase. Advances in Animal and Veterinary Sciences, 12(7), 1394 - 1403. https://researcherslinks.com/current-issues/Fermentation-Characteristics-In-Vitro-Nutrient/33/1/9592/html

Steel, R.G., & Torrie, J.H. (1980). Principles and Procedures of Statistics: A Biometrical Approach (2nd ed.). McGraw-Hill.

Van Soest, P.J., Robertson, J.B., & Lewis, B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583 - 3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Wang, C., Pian, R., Chen, X., Lv, H., Zhou, W., & Zhang, Q. (2020). Beneficial effects of tannic acid on the quality of bacterial communities present in high-moisture mulberry leaf and stylo silage. Frontiers in Microbiology, 11, 586412. https://doi.org/10.3389/fmicb. 2020.586412

Xiong, H., Zhu, Y., Wen, Z., Liu, G., Guo, Y., & Sun, B. (2022). Effects of cellulase, Lactobacillus

plantarum, and sucrose on fermentation parameters, chemical composition, and bacterial community of hybrid Pennisetum silage. Fermentation, 8(8), 356. https://doi.org/10.3390/fermentation8080356

Zahari, M. W., Hassan, O. A., Wong, H. K., & Liang, J. B. (2003). Utilization of oil palm frond-based diets for beef and dairy production in Malaysia. Asian-Australasian Journal of Animal Sciences, 16(4), 625 - 634. https://doi.org/10.5713/ajas.2003.625

Zhang, Q., Li, X., Zhao, M., & Yu, Z. (2020). Lactic acid bacteria strains for enhancing the fermentation quality and aerobic stability of Leymus chinensis silage. Frontiers in Microbiology, (71)3, 472 - 481. https://doi.org/10.1111/gfs.12190

Downloads

Published

2025-12-30

How to Cite

Nakdaeng ์., Temdee, W., Buaphan, S., & Chaovapasee, K. (2025). Supplementation of Baeckea frutescens in Oil Palm Fronds Ensiled with Crude Glycerin on Fermentation Quality and Chemical Composition. Journal of Life Science Agriculture and Technology, 4(2), 64–76. retrieved from https://li04.tci-thaijo.org/index.php/psj/article/view/8255

Issue

Section

Reserch Article