Biochar Production in Torrefaction Process from Bamboo Biomass to Predict Highest Heating Value
Keywords:
Biomass, Torrification process Bamboo, SVM algorithm model, KRR algorithm modelAbstract
This research investigates the effects of torrefaction on the higher heating value (HHV) of bamboo biomass. The process involves heating biomass at temperatures ranging from 200 to 400 °C under oxygen-limited or inert atmospheric conditions. Agricultural bamboo residues were sun-dried (average temperature 35.27 °C), ground, and sieved through mesh sizes of 20, 60, and 100. A custom-designed torrefaction system was developed, consisting of a horizontal tubular furnace, a vapor condensation unit, and a biomass feed chamber. The process was simulated and optimized using Aspen Plus V12.1 and Design Expert V13.0 to evaluate the HHV in megajoules per kilogram (MJ/kg). Proximate analysis of the bamboo biomass yielded values of 60.45% volatile matter, 6.73% moisture, 32.05% fixed carbon, and 1.84% ash. Under optimal experimental conditions—60 mesh particle size, 25 mL/min nitrogen flow rate, 340 °C temperature, and 90 minutes duration—the maximum HHV obtained was 19.3945 MJ/kg, with a mean prediction error of only 3.143%. Further optimization showed that the ideal conditions were a particle size of 33.6813 mesh, nitrogen flow rate of 28.9080 mL/min, temperature of 339.225 °C, and residence time of 52.2639 minutes, yielding an HHV of 19.4937 MJ/kg. Machine learning models were also applied to predict HHV based on 279 experimental data sets. Kernel Ridge Regression (KRR) demonstrated superior performance, achieving a prediction accuracy of 87.64% during training and 81.16% in testing, outperforming Support Vector Machine (SVM), which showed 60.60% and 57.85% accuracy, respectively. Therefore, KRR is identified as a more effective model for predicting the HHV of torrefied bamboo biomass.
References
ธนศิษฏ์ วงศ์ศิริอำนวย. (2564). การผลิตถ่านชีวภาพและแนวทางการใช้ประโยชน์. https://erp.mju.ac.th/acticleDetail.aspx?qid=1072
ปนัดดา อินทร์ดำ, โชคชัย เหมือนมาศ, และสุกฤทธิรา รัตนวิไล. (2562). การคัดเลือกปัจจัยที่ส่งผลต่อกระบวนการทอร์รีแฟคชันของทะลายปาล์มโดยใช้การออกแบบการทดลองด้วย. วารสารวิจัยมหาวิทยาลัยขอนแก่น (ฉบับบัณฑิตศึกษา), 19(4), 86–99.
Chen, Z., Pears, N., Freeman, M., & Austin, J. (2009). Road vehicle classification using support vector machines. IEEE International Conference on Intelligent Computing and Intelligent Systems, 4, 214–218. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5357707
Kartal, F., & Ozveren, U. (2020). A deep learning approach for prediction of syngas lower heating value from CFB gasifier in Aspen Plus. Energy, 209, 118457. https://www.sciencedirect.com/science/article/abs/pii/S0360544220315656?utm_source=chatgpt.com
Katongtung, T., Onsree, T., & Tippayawong, N. (2022). Machine learning prediction of biocrude yields and higher heating values from hydrothermal liquefaction of wet biomass and wastes. Bioresource Technology, 344, 126278. https://www.sciencedirect.com/science/article/abs/pii/S0960852421016205?utm_source=chatgpt.com
Loha, C., Chatterjee, P. K., & Chattopadhyay, H. (2011). Performance of fluidized bed steam gasification of biomass – Modeling and experiment. Energy Conversion and Management, 52(3), 1583–1588. https://www.sciencedirect.com/science/article/abs/pii/S0196890410004978?utm_source=chatgpt.com
Nhuchhen, D. R., Basu, P., & Acharya, B. (2014). A comprehensive review on biomass torrefaction. International Journal of Renewable Energy & Biofuels, 2014(2014), 1–56. https://pdfs.semanticscholar.org/ab71/ac1c2c7fe154b3135369265e0efd8e638b8d.pdf?utm source=chatgpt.com
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830. https://jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?utm_source=chatgpt.co
Wang, L., & Jia, X. (2009). Integration of soft and hard classifications using extended support vector machines. IEEE Geoscience and Remote Sensing Letters, 6(3), 543–547. https://www.researchgate.net/publication/224466676_Integration_of_Soft_and_Hard_Classifications_Using_Extended_Support_Vector_Machines
Zaman, S. A., & Ghosh, S. (2021). A generic input-output approach in developing and optimizing an Aspen Plus steam-gasification model for biomass. Bioresource Technology, 125412. https://www.sciencedirect.com/science/article/abs/pii/S0960852421016205?utm_source=chatgpt.com
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 ศวท : ศิลปศาสตร์ วิทยาศาสตร์และเทคโนโลยี

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
