Isolation and Identification of Actinomycetes Producing Plant Growth-Promoting Substances from the Rhizosphere of the Cymbopogon citratus

Authors

  • Neelawan Pongsilp Department of Microbiology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
  • Jintanart Wongchawalit Division of Microbiology, Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
  • Ratchanee Mingma Division of Microbiology, Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
  • Pongrawee Nimnoi Division of Microbiology, Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand

Keywords:

Actinomycetes, Indole-3-acetic acid, Ammonia, ERIC-PCR, RAPD

Abstract

Actinomycetes are a group of bacteria crucial for plants as they enhance growth, protect against diseases, and contribute to nutrient cycling in soil. This study aimed to isolate and identify actinomycetes from the rhizosphere of lemongrass and to evaluate their ability to produce indole-3-acetic acid (IAA) and ammonia (NH3). Five actinomycete strains were successfully obtained, all capable of producing IAA and NH3, with concentrations ranging from 11.71±0.96 to 43.41±0.80 µg/ml and 7.02±1.16 to 33.77±1.00 mg/ml, respectively. Strain A16 produced significantly higher amounts of IAA and NH3. The DNA fingerprints of these actinomycetes were assessed using Enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) and Random amplified polymorphic DNA (RAPD). Both methods generated distinct DNA fingerprints specific to individual strains. Analysis of 16S rDNA sequencing identified strain A16 as a member of the genus Streptomyces. These actinomycete strains warrant further investigation for their potential to suppress plant pathogens and promote plant growth under field conditions.

References

Akponah, E., & Ubogu, M. (2023). Phytopathogenic fungal growth inhibition by actinomycetes isolated from the rhizosphere of Cymbopogon citratus (Lemongrass). Acta Microbiologica Bulgarica, 39(3), 308-316. https://doi.org/10.59393/amb23390312

Boukhatem, Z. F., Merabet, C., & Tsaki, H. (2022). Plant growth promoting actinobacteria, the most promising candidates as bioinoculants? Frontiers in Agronomy, 4, 849911. https://doi.org/10.3389/fagro.2022.849911

Chaurasia, A., Meena, B. R., Tripathi, A. N., Pandey, K. K., Rai, A. B., & Singh, B. (2018). Actinomycetes: an unexplored microorganisms for plant growth promotion and biocontrol in vegetable crops. World Journal of Microbiology and Biotechnology, 34(9), 132. https://doi.org/10.1007/s11274-018-2517-5

Djebaili, R., Pellegrini, M., Smati, M., Del Gallo, M., & Kitouni, M. (2020). Actinomycete strains isolated from saline soils: plant-growth-promoting traits and inoculation effects on Solanum lycopersicum. Sustainability, 12(11), 4617. https://doi.org/10.3390/su12114617

El-Tarabily, K. A., St. J. Hardy, G. E., & Sivasithamparam, K. (2010). Performance of three endophytic actinomycetes in relation to plant growth and biological control of Pythium aphanidermatum, a pathogen of cucumber under commercial filed production conditions in the United Arab Emirates. European Journal of Plant Pathology, 128, 527-539. https://doi.org/10.1007/s10658-010-9689-7

El-Tarabily, K. A., Nassar, A. H., & Sivasithamparam, K. (2008). Promotion of growth of bean (Phaseolus vulgaris L.) in a calcareous soil by a phosphate-solubilizing, rhizosphere-competent isolate of Micromonospora endolithica. Applied Soil Ecology, 39(2), 161-171. https://doi.org/10.1016/j.apsoil.2007.12.005

Gordon, S. A., & Weber, R. P. (1951). Colorimetric estimation of indoleacetic acid. Plant Physiology, 26(1), 192–195. https://doi.org/10.1104/pp.26.1.192

Hayakawa, M., Yoshida, Y., & Iimura, Y. (2004). Selective isolation of bioactive soil actinomycetes belonging to the Streptomyces violaceusniger phenotypic cluster. Journal of Applied Microbiology, 96(5), 973–981. https://doi.org/10.1111/j.1365-2672.2004.02230.x

Hulton, C. S., Higgins, C. F., & Sharp, P. M. (1991). ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Molecular Microbiology, 5(4), 825–834. https://doi.org/10.1111/j.1365-2958.1991.tb00755.x

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096

Liotenberg, S., Campbell, D., Castets, A. M., Houmard, J., & de Marsac, N. T. (1996). Modification of the pII protein in response to carbon and nitrogen availability in filamentous heterocystous cyanobacteria. FEMS Microbiology Letters, 144(2-3), 185–190. https://doi.org/10.1016/0378-1097(96)00360-6.

Mahdi, R. A., Bahrami, Y., & Kakaei, E. (2022). Identification and antibacterial evaluation of endophytic actinobacteria from Luffa cylindrica. Scientific Reports, 12(1), 18236. https://doi.org/10.1038/s41598-022-23073-4.

Nimnoi, P., Pongsilp, N., & Lumyong, S. (2010). Endophytic actinomycetes isolated from Aquiliaria crassna Pierre ex Lec and screening of plant growth promoters production. World Journal of Microbiology and Biotechnology, 26, 193–203. https://doi.org/10.1007/s11274-009-0159-3

Nimnoi, P., Pongsilp, N., & Lumyong, S. (2014). Co-inoculation of soybean (Glycine max) with actinomycetes and Bradyrhizobium japonicum enhances plant growth, nitrogenase activity and plant nutrition. Journal of Plant Nutrition, 37(3), 432–446. https://doi.org/10.1080/01904167.2013.864308

Nonthakaew, N., Panbangred, W., Songnuan, W., & Intra, B. (2022). Plant growth-promoting properties of Streptomyces spp. isolates and their impact on mung bean plantlets’ rhizosphere microbiome. Frontiers in Microbiology, 13, 967415. https://doi.org/10.3389/fmicb.2022.967415

Omar, A. F., Abdelmageed, A. H. A., Al-Turki, A., Abdelhameid, N. M., Sayyed, R. Z., & Rehan, M. (2022). Exploring the plant growth-promotion of four Streptomyces strains from rhizosphere soil to enhance cucumber growth and yield. Plants, 11(23), 3316. https://doi.org/10.3390/plants11233316

Ruanpanun, P., & Nimnoi, P. (2020). Evaluation on the efficiency and persistence of Streptomyces jietaisiensis strain A034 in controlling root knot disease and promoting plant growth in the plant-parasitic nematode infested soils. Biological Control, 144, 104221. https://doi.org/10.1016/j.biocontrol.2020.104221

Sari, W. E., Solihin, D. D., & Lestari, Y. (2014). Identification of endophytic actinomycetes from Indonesian rice plant based on 16S rRNA and nifH genes analyses. Advances in Environmental Biology, 8(7), 2357-2365.

Shirling, E. B., & Gottlieb, D. (1966). Methods for characterization of Streptomyces species. International Journal of Systematic Bacteriology, 16(3), 313-340. http://dx.doi.org/10.1099/00207713-16-3-313

Silva, G. C., Kitano, I. T., Ribeiro, I. A. F., & Lacava, P. T. (2022). The potential use of actinomycetes as microbial inoculants and biopesticides in agriculture. Frontiers in Soil Science, 2, 833181. https://doi.org/10.3389/fsoil.2022.833181

Wongsariya, K., Duangupama, T., Pansomsuay, R., Thanaboripat, D., & Thawai, C. (2025). Genome characterization for the antimicrobial potential of Streptomyces samsunensis SA31, a rhizospheric actinomycete of Cymbopogon citratus (DC) Stapf. Current Applied Science and Technology, 25(1), e0260305. https://doi.org/10.55003/cast.2024.260305

Downloads

Published

2025-12-04

How to Cite

Pongsilp, N., Wongchawalit, J., Mingma, R., & Nimnoi, P. (2025). Isolation and Identification of Actinomycetes Producing Plant Growth-Promoting Substances from the Rhizosphere of the Cymbopogon citratus. ศวท : ศิลปศาสตร์ วิทยาศาสตร์และเทคโนโลยี, 2(3), 64–73. retrieved from https://li04.tci-thaijo.org/index.php/art-science/article/view/7922